
AD-766  04 

FUNDAMENTAL   STUDIES   IN   THE   USE   OF   SONIC 
POWER  FOR  ROCK   CUTTING 

Ka.-I   F.   Graff 

Ohio   State   University.      Research   Foundation 

Prepared   for: 

Advanced   Resaarch   Projects   Agency 
Bure au   of   Mines 

: 
April   1973 

DISTRIBUTED BY: 

KTiJ 
National Technical Information Service 
U. S. DEPARTMENT  OF  COMMERCE 
5285 Port Royal Road, Springfield Va. 22151 

  ''— - J    -■ ■-....-. . ^-: 
.-....■-„, ...^^   :.-.... ..^ 



o FUNDAMENT/VI  STUDIES IN THE USE OF 
SONIC POWER FOR ROCK CUTTING 

Karl F, Graff 

The  Ohio State University 
Research Foundation 
Columbus, Ohio U3212 

FINAL REPORT 

April, 1973 

NATIONAL TECHNICAL 
INFORMATION SERVICE 

Sponsored Hy 
Advanced Research Project Agency 

ARPA Order No, 1579 Amend. 3 
Program Code 2Fin 

Monitored By 
U.S. Bureau of Mines 

Twin Cities Mining Research Center 
Twin Cities, Minnesota 

a 

D D C 

tf 

SEP 10 flBt 

B 

;: 

,   •■ 

* Dlsüribuion Uftimuiwl 

^^^ 



'"T v   '"  DOCUMENT CONTROL DATA    RAD 

The Ohio State University Research Foundation 
131U  Kinnear Roai,   Colur.bus,  Ohio U3212 

Unclassified 
16.  cnou» 

N/A 

HlF'OHl     i . r L   k. 

FWfU/UEWrAL STUDIES  IN THE USE OF SONIC  POWER FOR ROCK CUTTING 

ft   NOTt J (Typ» ol /«pari and Inclutlwm dal««) 

il   February 2^, 1972 through April 22, 1973 
f"^   »^ TMOMTJI (Futi nam*. oiiJJI« Initial, («»i B««>»; 

!4 oc»e»<i*' T n 

Final 

Karl F. Graff 

r.- HI  MON T t> A T I 

[   April, 1973  

H0220037 
6 VHOJICJHO    ARPA Order 1579 

Amendment No. 3 

la.  TOTV.NO   OF p»ct» 

200 

76.  NO   o>   NE n 

i»8 
•a. omCiNAToa-» atPO«' NOM»S:I««»I 

SS   OTM( n MtPOMT HOI1I fAnr et>i«r niantMra ih.i mat 6« •••l|pi«d 
IM« nporl) 

[   . 1  •  K. ..   I  T rO~    »T»TCMINT 

Distribution of this doeumert is unlimited. 

11      lijf.PL t MtN T *B»   NOTH 
11     »P0*10"IM6  Mll.IT««»    ACTIVITY 

Defense Advanced Research Projects Agency 
1400 Wilson Boulevard 
Arlington, VA      22209 

II     »«»T«ACV 

The utilization of high power,  high frequency sonic transducers  for rock 
cutting has been in nrogress at Ohio State University for two years with the  second 
year of work presented in this report.    Two modes of rock cutting were investigated; 
the first,  simple drilling and the second,  layer cutting.    An impact coupling tech- 
nique, which utilized a small, bouncing cutting tool at the tip of the transducer, 
was used in both modes of cutting.    The overall study was divided into a system 
development phase, where laboratory cutting apparatus was tested,  and a system 
Sysis phase, where basic studies of sonic processes and devices were carried out. 

DD .r.r.1473 Unclascifu-d 

Srcunly CU^wilic»""" 

- -   - m 



UncteUyr;i^H1Mc....)r 

• I » »O HUI 

Rock cutting 

Power ultrasonics 

Bock drilling 

Ultrasonic drillinc 

Ultrasonic transducers 

■OLl MT 

LIN»    C 

Id 
Unclassified 

Srcunly CUoifn ^iiun 

MÜMKMU^iüMjil 



•-> .-v 

• • 

• • 

HI 

1 

FUNDAMENTAL STUDIES IN THE USE OF 
SONIC POWER FOR ROCK CUTTING 

Karl F. Graff 
Principal Investigator   (6lU)U22-2731 

The Ohio State University 
Research Foundation 

Columbus, Ohio 1+3212 

FINAL REPORT 

April, 1973 

Contract No. - H0220037 
Affective Date of Contract - February 23, 1972 
Contract Expiration Date - April 22, 1973 
Amount of Contract - $51,735.00 
Technical Project Officer - Patrick J. Cain, Twin Cities Mining 

Research Center, Twin Cities, Minnesota 

Period Covered: February 23, 1972 to Apr!1. 22, 1973 

This research was supported by the Advanced Research 
Projects Agency of the Department of Defense and was 
monitored by the U.S. Bureau of Mines, under Contract 
No. H0220037 

The views and conclusions contained in this document 
are those of the authors and should not be interpreted 
as necessarily representing the official policies, either 
expressed or implied, of the Advanced Research Projects 
Agency or the U.S. Government. 

lb 

! 

ma |UJ|fatf*^^y|^^^^ 



PREFACI 

This project on sonic rock cutting was sponsored by the 
Advanced Research Projects Agency and was monito-ed by the U S 
Bureau of Mines, Twin Cities, Minnesota under Contract No 
H0220037. James T. Olson of the Twin Cities Mining Research 
Center was the ARPA Program Coordinator, with Dr. Patrick J. Cain 
of the Twin Cities organization acting as Project Officer. Tl e 
work was an extension of earlier work under Contract No. K021C)010 
and was initiated on February 23, 1972 and completed on April 22, 

The work was performed in the Engineering Mechanics Depart- 
ment and Sonic Pow^r Laboratory of The Ohio State University 
under Research Foundation Project RF 3396. Dr. Karl F. Graff 
Piofessor of Engineering Mechanics was project supervisor. 
Charles C. Libby, Assistant Professor of Welding Engineering 
was in charge of the layer cutting phase of work from February 23 
through Jeptember 30, 1972. Peter Au and Gary Streby worked on 
the development of layer cutting techniques. Long-chin Shieh 
carried out experimental work in rock drilling while Ting-yu Lo 
conducted the analysis of the drilling process. The analysis of 
sonic transducers was done by Ching-chio Feng, as was the analy- 
sis of layer cutting. The report on a pulse-reflector for sonic 
transducers was prepared by Nelson Ma. Henry A. Bobulskl, Sonic 
Laboratory Manager, carried out instrumentation and assisted in 
the developme^. phases of all laboratory work. 
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SUMMARY 

The utilization of high power, high frequency 3onic transducers 
for rock cutting has been in progress at Ohio State University for two 
years with the second year of work presented in this report.    Two modes 
of rock cutting were investigated; the first, simple drilling and the 
second, layer cutting.    An impact coupling technique, which utilized a 
small, bouncing cutting tool at the tip of the transducer, was used in 
both modes of cutting.    The overall study was divided into a system 
development phase, where laboratory cutting apparatus was tested, and 
a system analysis phase, where basic studies of sonic processes and 
devices were carried out. 

— 

I 
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I 

Ccnsidering first the analysis phase of work, basic studies of the 
transducer, the drilling process, layer cutting and of a pulse reflector 
were carried out.    In the development phase, the work on drilling was 
continued from the first year into new tool designs and hard rock 
cutting.    In layer cutting, which was new to the second year, apparatus 
was constructed, tested on limestone, and then applied to cutting 
granite. 

While drilling and layer cutting in Indiana limestone was success- 
ful ir the sense of simply being able to remove rock, difficulties were 
encountered in penetrating hsyrd rock.    Numerous variations of cutting 
parar^ters were tested, until some success in layer cutting of granite 
was achieved.    Nevertheless, results were marginal.    While numerous 
ccnplex explanations are available regarding the difficulties, it is 
possible to SUIHE arize them quite simply.    The Impact coupling technique 
of energy transi'er presently represents a poor impedance match between 
the transducer and the load. 
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The possibility of using ultrasonics for rock cutting was noted by 
Mauer [l].* The technique proposed earlier was essentially an extension 
of the ultrasor.ic slurry drilling technique that has been successfully 
used for many yjars for cutting extremely hard materials, snch as 
tungsten carbide. However, the relative inefficiency and slow cutting 
rate of the slurry drilling process seemed to preclude, use of ultra- 
sonics for cutting rock. 

However, as has been noted in an earlier report [2], developments 
in power sanies at Ohio State University indicated that sonic rock 
cutting on a large scale might be feasible. An impact coupling means 
of energy transfer had been developed that enabled significant amounts 
of energy to be transferred to a work surface. Large sonic transducers, 
rated at 10 kilowatts had been developed. Crude experiments on drilling 
and cutting concrete had been carried out. 

Accordingly, a two-year study of sonic rock cutting has been con- 
ducted of which this report co/ers the second yexr. The work has been 
divided into systems developm-int and systems analysis phases. In the 
development aspect, laboratory rock cutting hardware has been constructed 
and tested. In the analysis aspecta, various fundamental characteristics 
of sonic devices and processes have been inrestigated, utilizing both 
theory and experiment. 

The work in the second year, reported herein, was aimed at utilizing 
two modes of cutting to penetrate hard rock. The first mode was the 
simple drilling of holes of one to one-and-a-quarter inch in diameter. 
The second mode was layer cutting. In this work, a sonic transducer 
was traversed across the rock surface. The transducer and impact tool 
were so arranged as to cut a gouge in the surface of one-qnurter to 
one-half inch in depth. Such an arrangement, it was felt, could be 
extended to a multiple array of transducers on a tunneling machine. 

Fundamental studies tha« accompanied hardware development included 
analysis of the transducer, analysis of the drilling process and develop- 
ment of a stress pulse reflector for the transducers. The work on the 
transducer, which included both th'ory and experiment, was directed at 
understanding the influence of pre^tress, voltage and temperature on 
transducer frequency. The drilling analysis also comprised theory and 
experiment and was aimed at predicting drilling rate, with effects of 
tool, static forces and rock type included in the analysis. The pulse 
reflector development arose from the need to mitigate the stress pulses 
transmitted into the transducer during impact coupling. 

♦Numbers in brackets refer to references at the end of this section, 
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A major objective of the second year of work was cutting of hard 
rock, and as basalt, quartzite rjid granite. Previous work had been 
done mainly on Indiana limestone. In the development of the layer 
cutting technique, which was completely new in the second year, cutting 
tects wore carried out on limestone until the apparatus was perfected. 
In terms of simple ability to cut rock, results were acceptable while 
working in the softer rock. Considerable difficulty was encountered 
in cutting hard rock, such as granite, however. This also held true 
in the drilling work. While some success was achieved in cutting hard 
rock, the results were quite marginal, both in terms of rate of rock 
removal and in terms of specific energy of remcvrl. 

While numerous complex explanetions could be put forth as to the 
difficiJLty in cutting hard rock in a significant way, it is possible to 
summarize the problem quite simply. It was one of mechanical (impedance) 
mismatch between the transducer and the load. The transducer is a 
powerful motor, known to be capable of transmitting 10 kilowatts of 
power into a matched load. Howrver, the impact coupling technique is 
a very poor matching system between the transducer and load. The 
bouncing tool was found to transmit only a small fraction of the energy 
in the transducer to the rock in an impact. Further, the rate of tool 
impact in rock cutting is on the order of hundreds of impacts per 
second, versus transducer vibration frequencies of 10,000 Hz. Thu', 
the transducer was operating effectively unloaded most of the time. 
The energy transfer process was thus found to be both inadequate and 
inefficient. 
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1. SONIC LAYER CUTTING OF ROCK 

1-1 INTRODUCTION 

The use of sonic energy for cutting layerb or kerfs in rc^k is not 
new. In earlier work,^ the model P-7 transducer was used to cut kerfs 
in concrete, as shown in Fig. 1-1. In this illustration the transducer 
delivers reciprocating force to the pivoted blade by means of inter- 
mittent or bouncing ccntact at tht upper end of the blade cr tool. 
The lower end of the tool cuts a groove in the limestone rock as the 
transducer-tool combination is traversed fron right to left. In this 
assembly the traverse is made parallel to the rock face and its velocity 
is determined by the rate at which a control wheel is rotated manually. 

Rock grooving, by this means, requires relatively lar^e amounts of 
energy per cubic volur.e ren^ved. This is because the rock is highly 
pulverized by the particular tool configuration used. Very few chips 
of any significant size are produced. The groove is, therefore, smooth- 
sided and sharp-edged. The process thus met the requirerents for kerf 
cutting in highways of minimum chipping and a sharp-edged groove. 
However, in layer cutting for excavation purposes, maximum volume of 
rock removal and rapid cutting speed is of greater interest. In par- 
ticular, it becomes desirable to produce considerable chipping from the 
region of the cut. 

The basic concept of layer cutting in the presfat work was somewhat 
different than in Fig. 1-1. Basically, the approach was to traverse a 
sonic transducer across the face of the rock, using a small impact tool 
at the tip of the transducer instead of the lengthy, massive tool of 
Fig. 1-1. By slightly irdining the transducer relative to the rock 
face, it was possible to apply sonic impact, via the impact tool, 
directly to the rock, instead of indirectly by the lever action of 
Fig. 1-1. 

The use of a small impact tool and the impact coupling means of 
energy transfer is common to many sonic processes. Basically, in the 
intermittent or noncontinuous t./pe of impact mode rock cutting, mechani- 
cal energy is withdravm from the transducer in discrete quantities 
during the intervals between impacts of the metallic tool by the elec- 
trical power supply system. The duration of tool impact is very short, 
a small percent of the relatively longer time between impacts; impact 
duration is fairly constant, vhereas the duration of the time interval 
between impacts varies inversely with the amplitude of the externally 
appliea static force. This static force is applied in the direction of 
the traverse of the rock cutting assembly. 

■»Work sponsored by The Ohio Department of Highways and the Federal 
Highway Administration under Ohio State Engineering Experiment Station 
Project EES 220, "Development of Sonic and Ultrasonic Pc;er Devices 
for Application in Highway Engineering." 
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In the application of sonic energy to layer cutting, three phases 
of development occurred. In the first, rather crude, ranually-operated 
apparatus was used to study various principles of cutting. In the 
Becond phase, a moderately elaborate piece of apparatus was developed 
to carry out extensive layer cutting tests in Indiana limestone. In 
the final phase of work, layer cutting of hard rock was studied. 

1-2 PRELIMENAKY APPARATUS 

The preliminary apparatus on which tests were made on the principles 
of layer cutting of rock by sonic impact means is shown in Fig. 1-2. 
In this view, a surplus machine shop grinder has been utilized to 
support and traverse the rock relative to the Model P-ll transducer* 
and its tool assembly. The block of limestone rock illustrated h^re is 
bolted down to the work surface of the grinder. The handwheels shewn 
in the lower portion of the pictures are utilized to raise and lower 
the transducer assembly, and to traverse the aosemb.y horizontally. 

The small impact tool at the tip of the transducer is evident. A 
second tool configuration, detached from its holding fixture, is also 
being shown by the researcher in Fig. 1-2. The impact tool is supported 
by a simple pivot about two inches above the impact point. A cantilever, 
attached at the nodal location of the transducer, holds the pivot 
assembly fixed relative to the trai.sducer. A clc:er view of the cutting 
apparatus is shown in Fig. 1-3, where a partially completei cut has been 
made. Note in the figures that the transducer is slightly inclined 
relative to the rock surface and that the line of trans lucer action is 
nearly direct into the cutting surface. 

The tool is free to swing in an arc, with its motion limited at 
one extreme by a flat-faced contact with the transducer tip, and at the 
other extreme by impact with the rock. As the transducer is moved 
parallel to the rock face, the tool is pushed against the tip of the 
then excited transducer. The longitudinal vibration of the trfjisducer 
tip applies a force-impulse to the rool during a short interval of con- 
tact time. This force-impulse sends the tool away from the transducer, 
moving in an arc about its pivot, and into impact with the rock surface. 
The kinetic energy of the tool is converted into work, breaking the rock 
surface. After the tool strikes the rock face, it rebounds toward the 
transducer tip, which is, of course, also moving slowly toward the tool 
due to the traverse motion of the assembly. The process of impact with 
the transducer and the rock is, therefore, repeated rapidly by the tool, 
and a stable impact-frequency develops. 

*The P-ll transducer has been described in the final report on 
Contract H0210010. 
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Several basic parameters controlling the layer cutting process 
were identified during work with the pn.liminary apparatus. The mass 
and geometry of the tools were, of course, parameters of the process, 
as they are for drilling or other impact coupling processes. The depth 
of cut and speed of traverse were parameters, as was the angle of 
inclination of the tranrducer relative to the rock face. The voltage 
to the transducer was a parameter. Finally, the material properties of 
the rock directly influenced the cutting process. 

1-3 IAYER CITTTING APPAEATUS 

The design and assembly of a larger device for layer cutting of 
rock proceeded lar -dir '.ely after tests in the preliminary apparatus 
were completed, lue resulting apparatus consists essentially of a 
large, welded, steel frame with a track of approximately eight feet in 
length, along which a carriage may be traversed. The carriage, on 
which is mounted the sonic transducer and cutting tool, is driven by a 
lead screw which is in turn chain driven by an adjustable-speed gear 
motor. 

Figure 1-1* shows an overall view of the equipnent, with frame, 
carriage, transducer, screw-drive and motor all shorfn. Means for 
supporting and clamping rock specimens also is shown. The welded steel 
frame is shown schematically in Fig. 1-5. A detail of the electric 
motor and chain drive is shown in Fig. 1-6. By varying the speed 
setting of the motor, as well as by interchanging gears, carriage 
traverse speeds from 0.25 to U.75 inches per second could be attained. 
The speed calibration chart for the system is given in Fig. 1-7. 

The mounting that holds the transducer at the nodal point and in 
turn attaches to the carriage is designed to allow the transducer to 
be aligned in any position from vertical to horizontal, in 10° incre- 
ments. The angle adjustment points show on the carriage in Fig. 1-U 
as the series of holes along a circular arc. Provisions for load cells 
were also incorporated in the carriage and show as the four short, 
vertical elements between the wheeled portion and transducer holding 
portion of the carriage in Fig. 1-k.    However, actual force readings 
were not done during the project. 

1-U LAYER CUTTING IN INDIANA LIMESTONE 

In carrying out tests of layer cutting in Indiana limestone, the 
previously mentioned parameters of tool mass and geometry, depth of 
cut, speed of traverse and transducer voltage and angle of attack were 
varied. Some of the dependent variables of the process included power 
input to the transducer and volume of rock removed, as well as such 
items as frequency of tool impact and forces developed in the supporting 
structure. 
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Fig.  1-7    Traverse speed versus motor and gear setting 
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In carrying out typical layer cutting tests, attention was given 
to the following items: 

(1) Transducer Resonant Frequency.    In advance of any series of 
test runs utilizing a fixed-frequency power supply with a sonic trans- 
ducer,  it is desirable to first establish the initial resonant frequency 
of the transducer.    In this work, the initial resonant frequency of the 
transducer was measured at no-load on the Dranetz impedance-admittance 
meter at the point of minimum impedance while a variable frequency, 
3 volts excitation level is applied to the transducer. In actual oper- 
ation the no-load resonant frequency of the P-ll transducer is found to 
vary inversely with the applied terminal voltage as previously described.* 

Consequently, it was necessary to tune the transducer to a higher 
frequency than the power supply frequency, to account for the frequency 
drop due to high voltage.     In a typical test run, the P-ll transducer 
had an initial no-load reson-nt frequency of 10,lU0 Hz,  the power 
supply delivered a fixed frequency of 10,05^ Hz and the excitation 
level measured at the transducer terminals under load was about 1000 
volts. 

(2) Speed of Travel.    In the tests using the manual traverse 
mechanism, it ^as not possible to measure speed of traverse directly. 
Measurements were, therefore, made of the time of traverse fron one 
face of the limestone block to the other face.    On the other hand, 
tests using the large console apparatus were made with predetermined 
speed settings.    However, no estimate of the possible speed reduction 
of the motor due to load was included. 

(3) Depth of Cut.    In initially establishing the depth of cut to 
be made, measurements were made of the interference between the tool 
and the rock face.    After the cut was made, further measurements were 
taken of the depth to which rock was actually removed.    The difference 
between these measurements gave an indication of the relative stiffness 
of the structure.    The depth measurements of the cut in the rock were 
recorded for crlrolating the volume of rock removed. 

(U)    Indication of Overload.    It was not possible during these 
actual test runs to monitor the frequency of impact or to measure the 
static or average forces required to drive the sonically excited tool 
across the face of the limestone rock.    As mentioned in section 1-1 
the frequency of impact is inversely proportional to the static or 
average force applied to draw the transducer and its tool across the 
rock face.    A very high frequency of impact may indicate the process 
is fully loaded. 

♦Annual Technical Report on previous Contract H0210010,   "Fundamental 
Studies in the Use of Sonic Power for Rock Cutting," December, 1971. 
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In sonic impact rock cutting, an excessive traverse velocity or an 
excessive depth of cut nay be defined as one in which the transducer 
cannot maintain impact-coupling with the tool, but instead becomes 
coupled solidly and continuously with it. Therefore, the point at which 
the transducer fails to maintain the impact mode of operation ir noted 
during each test run as a part of the test data. This point corresponds 
to, and is analogous to, a point in a motor driven process at which the 
drive motor stalls. To all intents and purposes, th^ process under 
investigation ceases to function at this juncture, 

(5) Volume of Rock Removed. Tne volume of rock removed was based 
on the dimensions of the groove formed in a flat surface of the rock. 
The cross section of this groove is generally trapezoidal in shape. 
The width of the narrow base of the trapezoid (w) corresponds to the 
width of the impact tool. The height of the trapezoid (h) corresponds 
to the depth of the cut in the rock by the impact tool. The width of 
the cut at the surface of the rock (v) varies rather widely where large 
chips are removed. It is in the need to estimate dimension v which 
results in a redaction of the accuracy of volume measurement to ± %. 

The area (A) of the trapezoidal section of the cut is calculated 
from these dimensions; A equals one-half the sum (w + v) multiplied by 
the height (h). The volume of rock removed is then calculated by 
multiplying the area A by the effective length of the cut U). The 
length of the cut must be estimated due to edge effects. The impact 
tool tends to break out fairly large portions of the rock, both at the 
beginning and at the end of a block it is grooving. In estimating 
volume of rock removed, the break-out volume has been ignored. 

The accuracy of volume estimates, based on these measurements has 
been found to be within 5$ of the actual volume of rock removed, 
measured by displacement means, 

(6) Angle of Attack and Face Angle. The angle of attack of the 
transducer may be definei as the inclination of the transducer's center- 
line in reference to the horizontal line of the work surface. By in- 
creasing this angle it is possible to increase the downward component 
of externally applied static force. The increased angle of attack has 
been assumed to be required for harder reck. 

It must be recalled that the impact tool position is fixed to the 1 i 
transducer-carriage assembly.  The angle between the face of the cutting 
tool and the rock is therefore not only dependent on the tool design, 
but on the angle of attack of the overall transducer. Thus, if the 
angle of attack is varied, generally the tool must be redesigned to 
account for the variation in face angle relative to the rock. 
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1-5 RESULTS FOR LIMESTONE 

Various tool designs were utilized in the limestone cutting work. 
A typical impact tool is detailed in Fig. 1-8. The drawing illustrates 
the 70° face angle of the tool and the carbide insert in uhe flat cutting 
face of the tool. The cutting face of this 3/U" wide tool is held 
perpendicular to a horizontal work surface when the transducer is 
inclined at 20° from the horizontal. With the transducer at a 30° tilt, 
the tool face is inclined at about 80° from the horizontal work surface. 
Other tool designs can be used to modify the relationship between the 
transducer position, or its attack angle, and the angle which the tool 
face makes with the work surface. 

Figure 1-9 illustrates a second generation tool design in which 
the impact face of the tool has been modified into a plow-shape with a 
130° included angle between the faces of the tool. The cutting angle 
of the tool is aprroximately the same as in the flat-faced tool in 
Fig. 1-8, although the tool width is reduced to 1/2". This narrower 
tool should allow faster cutting speeds with the same rock, or perhaps 
cutting of harder rock at the same traverse speed as the 3/U,, flat- 
faced tool. The cutting face of this tool is held perpendicular to the 
work surface with the transducer inclined at 15° fron the horizontal. 

(A) Results from Preliminary Apparatus 

Figure 1-10 illustrates the first data obtained on layer 
cutting of limestone. The results were obtained using the manually 
traversed apparatus of Fig. 1-2. The data presents tha  rate of rock 
removal (in.3/sec) versus cutting depth. Because a manual traverse 
was used, velocity determinations were only approximate. 

Figure 1-11 presents the preceding data in a different form, 
showing the specific energy of rock removal versus cutting ''^pth. The 
major point of interest is the existence of a pronounced minijum at 
about 0.5-inch cutting depth. 

(B) Results from Large Cutting Apparatus 

An illustration of the cutting action in limestone during a 
typical test is shown in Fig. 1-12. Fairly large rock fragments are 
shown being dislodged. A large breakout area at the end of the block 
often existed and was discounted in all data reduction. 

Figures 1-13 and 1-lU present data on volume of rock removal 
versus cutting speed for two different depths of cut (l/2" and l/h"). 
The volume of excavation shown on the ordinate of Fig. 1-13 is for a 
6" traverse distance in limestone with a 3/U" wide tool. The angle e 
is the attack angle of th ^ transducer, that is, its angle of in^ination 
from the horizontal. Nets that dotted lines indicate the point at which 
speed of travel exceeded Ihu level at which impact cutting was possible. 
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Fig.  1-8    Flat-faced cutting tool 
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Fig.   1-9    Plow-shaped cutting tool 
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Fig, 1-10   Rate of rock removal for early apparatus 
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Fig. 1-11 Specific energy of rock rtnoval versus depth of cut for 
early apparatus 
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 1  
Tool width 3/4" 
Depth of groove 1/ 
Distance of running 6 
Power Input 1500-2000 W 
Voltage input 1000-1100 V 
Supply frequency 10,050 Hz 
Fr. Initial (Oranetz) 10,141 Hz 
Rock« Limestone 
Transducer« P-II 

0=Angle transducer tip 
makes with rock surface 

Q Data point for 0=10° 
A Data point for Ö =20e 

□ Data point for ^=30° 

— — —    A whole run of 6" cannot 
be completed, tool locks 
up against transducer 

tip. 
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SPEED (in./sec) 

Fig. 1-13 Volume of rock removal versus cutting speed 
for a 0. 5 inch depth of cut 
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Fig. 1-lk    Volume of rock removal versus cutting speed for 
a 0.25 inch depth of cut 
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1-6 LAYER CUTTING El GRANITE 

The ultimate objective of the work on rock cutting was to effec- 
tively penetrate hard rock, such as Barre Granite, Dresser Basalt and 
Sioux Quartzite. After some success in cutting limestone, the effort 
was made to transition the same cutting techniques to hard rock. All 
work reported in the following was carried out on granite specimens 
obtained locally. 
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The dotted lines indicate possible extrapolation into an area of overload 
on the transducer. Figure 1-13 indicates that the impact mode of oper- 
ation could not be maintained with a l/2" cut depth, and a 20° angle 
of attack, for more than 2.25 in./sec traverse speed. At speeds higher 
than th5 3, the tool maintained constant contact with the transducer, 
ijapf.^L  cutting ceased, the transducer detuned, its power input dropped 
and sonic cutting was brought to a halt. 

Figure l~lk  shows that with the same tool and half the depth 
of cut, the velocity of traverse can be almost doubled when compared to 
Fig. 1-13. The point at which impact cutting ceases with a 20° attack 
angle and a l/U" depth of cut is U.75 in./ace  compared to 2.25 in./sec 
with the 1/2" cut depth. It is to be noted in Figs. 1-13 and 1-lU that 
the volume of rock removal tends to increase for a shallower angle of 
attack (exception: the 9 = 10°, 20° curves of Fig. 1-lh). 

In Figs. 1-15 and 1-16, data on the specific energy of rock 
removal versus cutting speed is given. The data is for 1/2" (Fig. 1-15) 
and l/U" (Fig. 1-16) depths of cut and for various angles of attack. 
It is first particularly significant to note the renid decrease in 
specific energy requirements for increasing cutting speed for both 
depths of cut. It is also to be noted that the specific energy of 
removal is rather insensi we to the attack angle. 

It is of particular interest that the specific energy curves 
are "leveling off" at the higher cutting speeds. Although a clear, 
lower level asympote does not exist in either Fig. 1-15 or 1-16, it 
does not appear that specific energies of much less than 500 W-sec/in.3 

would occur for the l/2-inch cutting depth or less than 1000 W-sec/in.3 

for the l/U-inch cutting depth. 

Figure 1-17 presents some of the preceding data in terms of 
specific energy for various traverse speeds for a fixed angle of attack 
of 10°. The specific energy is thus seen to decrease with increases in 
both traverse speed and with depth of cut. Both of these are independent 
variables and each tends to increase the loading on the transducer. 
The specific energy, therefore, is improved as the transducer's load 
increases. 

. 

; 

— 



I 
: 

:: 

:: 

i 
i 
i 
i 
i 
i 

9 

8 

(A     7 
I I 

§  5 

UJ 
QL 

o   . 
UJ   4 

to 

8 

Ul z 
UJ 

I - 

T T 

Tronsducen P-ll 
Rock limestone 
Depth of groove 1/2" 
Width of tool 3/4" 
Distance of running 6" 
Power input I500-2000W 
Voltage input lOOO-liOOV 
Supply frequency 10,050 Hz 
Fr. initial (Dranetz) 10.141 Hz 

0s Angle transducer tip makes 
with rock surface 

O Data point for 0=10° 
A Data point for 0 = 20° 
D Data point for 0 =30' 
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Fig.  1-15    Specific energy of rock removal versus cutting 
speed for 0.5 inch cutting depth 
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(A) General Difficulties Encountered 

Difficulties were immediately encountered in attempting to 
cut hard rock; the tools and operating conditions sufficient to penetrate 
limestone were simply not adequate for cutting granite.    It was found, 
for example,  that cutting depths of l/2-inch were not possible.    Nearly 
all subsequent work was restricted to 1/16- to 3/l6-inch attempted 
depths of cut.    Secondly, the previous voltage level applied to the 
transducer of 1200 volts was inadequate.    All reported tests, therefore, 
were run at 2500 volts, which was close to the maximum voltage rating 
of the transducer.    Finally, traverse speeds of several inches per 
second, possible in limestone, were not possible in granite.    Speeds 
of approximately 1 in./sec were used on most tests, with higher speeds 
being attained only near the end of th^ research work. 

(B) Attack Angle 

Shallow attack angles of 10 to 20° were found most successful 
in limestone. However, it was found that in granite shallow attack 
angles generally did not yield satisfactory cutting. What usual 1 y 
occurred was that the cutting tool would "ride up" on the rock. That 
is, instead of maintaining a given depth of cut, the cut depth would 
diminish until the tool was skidding along the rock surface. 

The fact that the tool was able to ride up was a result of 
some elasticity and backlash in the system. The cantilever tool 
support was the major source of elastic deformation. Some slight 
looseness between the wheels of the carriage and the track was the 
major source of system backlash. 

One approach to the ride up problem was merely to increase 
the depth of cut beyond the deformation-backlash range of the system. 
A depth of l/2-inch was sufficient for this. However, as previously 
indicated, the transducer system was generally incapable of penetrating 
the granite at these depths. 

The approach generally used was to increase the angle of 
attack from 30 to U0o. This increased somewhat the downward cutting 
action of the tool and thus tended to maintain the depth of cut. 
Probably equally important, it decreased the bending on the cantilevered 
tool support arm and thus reduced the elastic deformation of the system. 

Additionally, stiffening was added to the tool support arm. Shims 
were placed between the carriage wheels and the track to reduce system 
backlash. Even with these modifications and the change in attack angle, 
ride up of the tool continued to occur occasionally. 

A last, more or less impromptu, measure taken near the end of 
work was to manually force the tool downward by pressinc against the 
cantilever tool support fixture. This, in conjunction with the other 
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measures taken enabled fairly consistent cuts to be made in granite near 
the end of the work period. 

(C) Tool Designs 

Cutting tool widths, 3/Vinch to 1 inch, were used in limestone, 
In granite, tool widths were decreased to l/2-inch to increase the con- 
tact stress against the rock. Initial tests were run using the plow- 
shaped tool previously shown in Fig. 1-9. With this tool, it was found 
that the carbide tip was repeatedly fractured during cutting. Sharp 
corners were broken away. Fractures through the carbide near the inter- 
face between steel and carbide were noted. Finally, fractures along 
the narrow neck of the tool occurred. Some of these failures are shown 
in Fig. 1-22. 

One of the tool redesigns was a heavier, plow-shaped tool, 
shown in Fig. 1-18. It is to be noted that the neck region of the tool 
is considerably thickened over that of Fig. 1-9. Additionally, it was 
felt that a more massive tool would increase the energy transfer during 
the impact coupling process. 

Another design was the saw-edged or stepped tool, shown in 
Fig. 1-19. The idea was to modify the plow tool to obtain a stepped 
cutting action, with the cutting steps on the order of the cutting 
depth of a single edged tool. Accordingly, two l/8-inch steps were 
placed in the tool. 

A chisel-shaped tool, shown in Fig. 1-20 was also tested. 
This tool used a slightly more complicated pivoting action than the 
simple pivots of the previous tools. In addition, it had an even 
narrower cutting edge (l/V). During test, it was found that the 
looseness of the pivot arrangement caused the tool to ride up quite 
easily. 

A two-piece round impact tool was designed, as shown in 
Fig. 1-21. The cutting tool itself had a rounded transducer impact 
point to improve energy transfer to the tool during impact coupling. 
The cutting edge of the tool had no particularly new design features. 
The second part of the tool was the holder, designed to pivot in the 
manner of earlier tool designs and to rigidly hold the tool. The 
overall intent of this design was to enable a number of easily replace- 
able tool designs to be tested. In operation, it was generally found 
that the tool could not be rigidly retained in the holder during impact 
action. 

Several of the tool configurations are shown in Fig. 1-22. Mainly, 
the figure depicts son.e of the fractures and failures that occurred in 
the tools. Thus, carbide inserts are seen to be fractured or missing 
in two of the tools. A fracture across the neck of one of the tools 
also is evident. A heavy plow-shaped tool is shown as is the stepped 
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Fig.  1-19    Stepped cutting tool 
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Fig.  1-21    Two-pioce impact tool D 
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cutting tool, although the stepped edges are not revealed clearly in 
the latter. 

(D) Spring-Return System 

An Ijnportant ijtep of the impact-coupling process is the phase 
of tool rebound from the load. In particular, if tool rebound is too 
low, energy pickup from the transducer if» also low, leading to rather 
weak impact against the load. It was felt that a spring-assisted 
return of the tool against the transducer would enhance the cutting 
process. A spring was installed in front of the tool to increase tool 
rebound velocity. 

Mechanical springs of different stiffnesses were tried, 
fiventually, a small block of silicone rubber, yielding a fairly stiff 
spring, wan found to work best. The configuration of spring and tool 
is shown in Fig. 1-23. 

Thinsducer tip 

Tool pivot assembly 

Spring 

§^®^ffi§ffl? 

J 

i 

: 

: 

'z^^^^m 
Jig. 1-23 Spring assisted tool return assembly 
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(E) Transmission Line Optimization 

Two fixed frequency motor-generators were available for 
supplying high frequency power to the transducer. The output frequencies 
of the generators were slightly different, one being 9»720 Hz, the other 
10,05!+ Hz. For optimum action, it was naturally desirable that the 
transducer-transmission line resonance be eis close as possible to 
generator frequency at operating voltages. However, the operating con- 
ditions of high voltage and temperature increases tend to lower trans- 
ducer resonance from the no-load, low voltage conditions under which 
it is tuned. Consequently, it was felt desirable to conduct a series 
of tests to determine th-. optimum transmission line length to achieve 
tuned operation under load. 

The tests started with a transducer fitted with a long trans- 
mission line, so that the system resonant frequency was considerably 
lower than the supply frequency. A layer cutting run was then performed, 
with the transducer input power being noted. The transmission line wa.- 
then trimmed by l/l6 inch and the cutting process repeated. As the line 
was shortened, the power input increased, up to a point, and then started 
to diminish. The process was continued until it was obvious that the 
optimum length had been reached and passed. 

Figure 1-2'+ shows the low voltage, no-load resonant frequencies 
for various transmission line lengths. The slope of the average straight 
line is 25 Hz drop per l/l6 incu increase in line length. In Fig. 1-25, 
the input power to the transducer under cutting conditions for various 
transmission line lengths is shown. Obviously, a very pronounced peak 
is reached at a length of 10-1/16 inches. Referring to Fig. 1-2U, it 
is seen that this length has a no-load resonant frequency of 10,125 Hz. 

1-7 RESULTS FOR GRANITE 

Although many difficulties were encountered in layer cutting of 
granite, seme successful cuts were accomplished. Figure 1-26 shows a 
cut being made with the heavy, plow-shaped tool of Fig. 1-18, with the 
spring-assist device of Fig. 1-23 also being utilized. Figure 1-27 
gives a general indication of the depth and profiles of sane of the 
cuts. 

Figure 1-26 shows data obtained on the volume of rock removal for 
various cutting speeds, at two different angles of attack. The specific 
energy of rock removal versus cutting speed is shown in Fig. 1-29 for 
the two different angles of attack. The data at the k0o  angles of 
attack is "well behaved" in both Fig. 1-28 and 1-29, in that it resem- 
bles the general results obtained in limestone cutting. The results 
for 30°, however, indicate a marked decrease in removal efficiency for 
speeds beyond about 1/2 inch per second. This result mainly reflects 
the tendency of the tool to ride to the surface at lower angles of 
attack. 

33 

— - M^. mmm 



KiPUMJ IIII.immm^imvmv»11       n»i ■« « M n WMWWHWwniimaM. '  m 

10.2 

10.1 

yj  10.0 
Q 

I 

9.9 

T I i 1 1 1 T 

Generator frequency 10,054 Hz 

Average frequency drop 25 Hz pei 
1/16" increase of length 

981 1 —I I till 
9.75 IO0 10.25 10.50 

TRANSMISSION LINE  LENGTH (in.) 
10.75 

ig. 1-21* No-load low-voltage resonant frequency change with 
change in line length ^    e    n 

LI 

3U 



P"'""""1"-""1     i i.. I«|*WP^Ä!PP^B»W^IWPIP ■IIIVIP^I in    ■■■■i  ■   i i|iw^wi^p«wip«MHWii>iuHW*i ii in wiu^n^a«! 

I 
I 
:; 

o 
ü 
D 
:: 

a 
i: 

;: 

[ 

1500 - 

S   1000 

CO 

o o 
or 
UJ 

§ 
Q. 

500 - 

1 l 1 1      '      1      ' 
— 

/ ̂  - 

: 
/ 
\ 

Generotor frequency IQ054Hz 
Voltage'3000V 

M 

/ 

0 \ 
*" 

— 

/ 

( o\ - 

- 
/ 

\ 

- 

/ \ O 

— 

1 1 1            1             1             1 
9.75 100 10.25 10.5 

TRANSMISSION LINE LENGTH (in.) 
10.75 

I 
I 
I 

Fig. 1-25 Input power versus line length under cutting conditions 

35 

■UMiM --'■-■  — ■ 
-.J.^—E^l--^... 



-^mmmi^mmm mmm^mimmm^mm 

0) 
-P 
•H 

s 

O 

■P 
o 
aJ 

U 
G 

^-t 
-P 
P 

•H 
Ik, 

36 

-- 



• ■ ■ ' **^*mmm*mm ^^p^i~» '■• "i!" '"-r^mmmamm^^m^mmmmmim^^m^i^mmmmi V"""* 

Fir. 1-27 Typical cuts in granite 
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While some success was ultimately achieved in cutting granite, the 
overall results must be interpreted as highly marginal in hard rock. 
With the general tendency of the system to stall or couple to the rock 
when too great a depth of cut was attempted, and the tendency to avoid 
the rock by tool "ride up" when shallow cuts were attempted, a rather 
precarious balance of parameters was necessary to achieve successful 
cuts. This unstable situation was, it seemed, merely indicative of the 
fundamental problem of inadequate power transfer to rock for cutting. 
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2.    TECHNICAL LITERATURE APPLICABLE TO 
ANALYSIS OF LAYER CLTTING 

2-1    XNTRODUCTION 

Sonic layer cutting or rock utilized a transducer vibrating at 
high frequency (10 kHz for the present application) as the energy 
source.    The mechanical vibrational energy is transmitted from the 
transmission line of the transducer to the rock by a bouncing tool via 
an impact coupling process.    Although significant amounts of energy are 
transmitted to the work piece by the rapid impacts, the energy transfer 
involved in a single blow is relatively small compared to,  say, conven- 
tional percussive drilling.    In order to induce failure of the rock 
through many small increments of energy is a different process than a 
low frequency, high energy per blow process; therefore, it is most 
Important to understand the effects of process parameters such as depth 
of cut and tool geometry on rock fracture.    A better understanding of 
the rock fracture mechanics was required.    With this in mind, a brief 
review on the failure theories of rock is given before proceeding to 
the technical literature applicable to the layered cutting process 

2-2    FAILURE THEORIES OF ROCK 

It is well known that rocks generally are highly inhcmogeneous, 
anisotropic and porous .    The constituents and structures vary from 
rock to rock.    It is indeed very difficult to give a universal failure 
theory to cover all rocks.    Nevertheless, some o. servations have been 
made on the general failure modes of most rocks.    Rocks are said to be 
brittle under low confining pressure.    A number of failure theories have 
been proposed and reviewed in several papers [l],  [21.*    The various 
theories can be divided into three categories:     (A) the empirical 
criteria,   (B) the phenomenological failure theories, and (C)    the 
statistical failure theories.    In the following, a brief review will 
be presented on the above three categories. 

(A)    The Empirical Criteria 

This category includes the maximum shear stress theory and 
the Coulomb-Navier-Kohr theory.    The maximum shear theory states that 
failure occurs at the point where the maximum shear stress becomes 
equal to a critical value called the shear strength of the material 
vhi^h is independent of the stress state.    If oi > cr2 > 0-3 denote the 
three principal stresses, this theory predicts that failure will occur 
on the plane inclined to the maximum stress oi, and whose normal 
bisects the {^,^3) axis.    According to this theory, the uniaxial 
tensile and conpressive strengths should be the same.    Ductile materials 
(such as metals) appear to be the only materials which fail   in this way. 

♦Numbers in brackets refer to references at the end of this chapter. 
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However, for most rock materials, the strengths are usually dependent 
on the stress state in that their strength increases .vith an  increasing 
confining pressure. Moreover, the compressive strength of a rock is 
usually much greater than its tensile strength. The failure planes are 
inclined less than U50 (about 30°, with a tendency to increase slightly 
as the confining pressure increases) to the direction of maximum ccm- 
pression. Therefore, it is not proper to apply the maximum shear theory 
to rocks. 

To overcome some of the deficiencies of the maximum shear criterion, 
the Coulomb-Navler Criterion was proposed by Navier (see, for example, 
King [3]) by utilizing the Coulomb friction concept (see, for example, 
Nadai [U]). This criterion may be stated as follows: Suppose that 
(Ti > CT-j are the principal stresses (compressive) in two dimensions. 
The normal compressive stress a and the shear stress T on a plane 
Inclined to 03 by an angle 9 (see Fig. 2-1) may be written as 

0" = 2 ^i + ^a) + 2 ("i " (T3) cos 29 

T = 2 (^i " cr3) sin 29 (2-1) 

^ 

1 f 

*  , 
* * 

\ 
a; 

1 ■ 

^3 

i 

i 

(a) (b) 

Fig. 2-1 A two-dimensional stress state 
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Assume that when failure occurs, element A (Fig. 2-1 (b)') will slip 
along the failure plane 9 = e0, as the shear stress along the failure 
plane exceeds the resisting strength T, which was proposed by Navier 
to be 

T = T0 + ua (2-2) 

where T0, a material constant, is called the intrinsic shear strength 
of the material and n is the internal Coulomb friction coefficient. 
Physically, u is the coefficient of sliding friction of one portion of 
the rock against the other.    Incorporating eq.  (2-2) into the assumed 
failure criterion, the failure condition is obtained as 

M > T0 + ua 

Thus, failure occurs, when 

T0 = \t\   -nor 

(2-3) 

(2-4) 

- - 5 M(CTI + 03) + ^ (oi - craKsin 290 - u cos 290) 

Pran eq. (2-3) it is seen that for a given T0, (TJ. and erg, the potential 
failure plane can be decided by the angle 90 which makes the right hand 
side of eq. (2-3) a maximum or it is the angle 0O which makes the stress 
state satisfy eq. (2-3), whichever occurs firsL. This en  is found to 
be 

tan 29Q = - - 

Substituting eq. (2-5) into eq. (2-1+) gives 

Oi( ^? + 1 - n) - oat N/H2 + 1 + n) = 2TC 

or. 

2T0 = tan 290 

This may be written as 

1   ,     .  ,     .   1 
((Ti + 0-3) + (a! - 0-3) 

sin 29o 

(2-5) 

(2-6) 

(2-7) 

Oi = 2T0 tan 90 + as tan
2 90 (2-8) 

From eq. (2-8), the relation between tn and (j3  is seen to be a straight 
line (see Fig. 2-2). Denoting 290 = n/2 + 9, then sin 290 = cos cp, 
cos 290 = -sJn 9 and thus n = tan qj = -1/tan 29o, so that eq. (2-k) 
becomes 

^3 
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.//MQ       tan a = tan26^ = 
l-t-Sin j) 

l-Sin</) 

r0 tan ^c^o 

Fig.  2-2    The ^-crg failure boundary 

or, 

2T0 = oi 1 - sin cp 
cos cp 0-3 

1 + sin cp 
cos qp 

Tm = "-o cos <P + oin sin (p 

(2-9) 

(2-10) 

where Tm = 2  (^i   " ^s) is "the maximum shear and am = ^ (cri + as) is the 
mean stress.    From eq.   (2-5),  it is seen that 90 > n/k which is in 
accord with the experimental observations.    From eq.   (2-6), it is seen 
that the tensile strength  crto is given by letting crj. = 0 so that the 
equation becomes 

«to =  -03 = 
Sfr 

The canpressive strength <JCO is given by substituting 0-3 = 0, or 

(2-11) 

Oco   =   Oi 
2ir 

■Vn^ + 1 - ß 

Therefore, crto / crco, and their ratio is 

atn = slu2 + 1 - [X 

^co   ^u2 + 1 + n 

(2-12) 

(2-13) 

which is less then 1 and, thus, is in accord with the experimental 
observations. Equation (2-1+) can also be expressed as 

= ( T ( - tan qp • a (2-11+) 

kh 
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which is plotted in Fig. 2-3, and is again a straight line. Note that 
the circles tangent to the straight lines are the Mohr's circles which 
give the stress states at failure. The failure line is also called the 
Mohr envelope. 

r     r 

Fig. 2-3   Mohr envelope of failure 

Several shortccmings also exist with this criterion, such as; 
fl) the theory cannot predict the value of the principal stresses at 
i   !lure, and (ii) n is difficult to obtain.   However, the failure 
eu/elope does have fairly good agreement with the observed results for 
rock-like materials.    Moreover, the relative simplicity of the criterion 
aids in making it one of the most widely uiad failure theories. 

Later development in the area of shear failure followed closely 
the work in the theory of plasticity.    Usually, the failure theories 
are expressed in terms of stress invariants.    For example. Von Mises1 

criterion [5],  [6] 

J2 = i [(si as)2 + {<J3 - 0i)2+ (^ - a2)
2] = kz (2-15) 

where J2  is called the second stress invariant and k is a material con- 
stant associated with the yield stress in simple shear. Other criteria 
are associated wi^h Tresca [5], [6], Freudenthal [7] and Bresler and 

lister [8] 

(B) Phenomenological Failure Theories 

This category includes Griffith theory, McClintock and Walsh's 
modified Griffith theory, and Murrel's generalized Griffith theory in 
three dimensions. 
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Griffith suggested that there are a great number of micro-cracks 
existing in a brittle solid.    Failure occurs when the existing mcro- 
SSrsprLd.    The condition of crack extension was proposed to depend 
^SerS bailee; i.e.,  if an increase in crack size (length    leads to 
TdSion of the tot^L free energy, the system ^«e« ^Btatole a^ 
the crack spreads.    The uniaxial critical stress Co (tensile),  is found 

to be 

<70 

{Q-t\    ,  for plane stress 

(      &y      \    . for plane strain 
Uc(l - vjj    ' 

(2-16) 

where v, Y, are the Poissons'  ratio and Youngs' modulus of the ferial, 
fis th; surface energy of the material, and 2c is the length of the 
crack.    The maximum stress at the crack tip is found to be 

(2-17) at = cr0 # 

where p is the radius of curvature at the crack tip. 

The Griffith theory has been extended to the case of a biaxial 
stress field with an elliptical flaw. It takes the form 

(<TX - <J3)2   -   8cTtoK + tT3) = 0 (2-18) 

when a, + 3^3 > 0 and oto is the tensile strength of the material. For 

ai + 303 < 0, the failure criterion is 

as - ato < 0 (2-19) 

The Mohr envelope for eq. (2-l8) can be shown to be 

t2 = Wto(^ + *to) 

which is a parabola. 

Under compression, the Griffith cracks can be closed. Griffith 
theory was modified by McClintock and Walsh to account for the friction 
along the crack surfaces. The failure criterion takes the form 

(2-21) 

(2-20) 

-U'Cffl + aa) +  («Ti  - ^3) ^1 + ^~ = Uato 

where ^  is the coefficient of friction along the crack surfaces.    This 
can also be written as 

ai i£la 
N/1 + u 

■sflTu'2 + u'   „ 
 . C          CT3 

4i + n"" - n' 
(2-22) 
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Comparing eq. (2-22) with (2-6), it is easily seen that the two results 
will be the same if 

M' = U ,   2ato = * (2-23) 

Therefore, if again we let n = tan «p, the modified Griffith failure 
criterion can be e^qjressed as 

T ■ 2^to + W (2-2U) 

Graphically, the Griffith theory, eq. (2-19) and the modified Griffith 
theory, eq. (2-2U) are shown in Fig. 2-1+, where n is assumed to be 
0.8 < ii < i.o. 

Fig. 2-k    Griffith Theory (G.T.) and Modified Griffith 
Theory (M.G.T.) 

From the above, it is seen that the Griffith theories can predict 
the tensile strength of a brittle material in terms of crack length, 
elastic constants and surface energy. It is capable of predicting the 
stresses for failure subject to a two-dimensional stress state. How- 
ever, the Griffith theories cannot evaluate aco ani oto directly; thus 
the theory is not applicable to the failure of rock material. 

Murrell [9] extended the Griffith theory to three dimensions. The 
failure surface was found to consist of a portion of a paraboloid of 
revolition, symmetrical about the line ox = 03 = 03 an(i passing through 
the o "igin. The equation is 
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(as  - aa)^ + (03 - Vi.)2 + {uj.  - v?)2  = 2kat0{u1  + CT2 + a3) ,2_25} 

(C) Statistical Failure Theories 

The statistical models propo-.e that the strengths of materials 
are decided by the weakest link of the random distribution of Griffith 
flaws in the materials. Thus there will be a distribution of strengths 
in a given specimen because a different stress is required to fracture 
a specimen at one or another point. Several papers based on this con- 
cept are reviewed in Brady [2], and will not be further discussed here. 

2-3 LITERATUEE APPLICABLE TO LAYER CUTTING 

There is considerable literature available that applies to the 
problem of rock drilling mechanics in both the theoretical and experi- 
mental areas  (see for example, Maurer [10], Dutta [11], Mahban [12], 
Hustrulid [Ik],  Cheatham and Gnlrl [Ik],  Pariseau and Fairhurst [15], 
etc.). Most of these, however, relate to percussive drilling configu- 
rations and have little application to layer cutting. Literature 
directly concerning layer cutting of rock is rather sparse. There have 
been numerous studies in metal cutting problems, however, that can 
provide a starting point for some analysis. Literature concerning the 
metal cutting mechanics will be reviewed first. Then the literature 
pertaining to the layer cutting mechanics of brittle materials will be 
reviewed. 

Merchant [16] considered simple models of metal cutting processes, 
which included the "orthogonal cutting," with a straight-edged cutting 
tool moving relative to the work piece in a direction perpendicular to 
its cutting edge, and the "oblique cutting," with the cutting edge 
oblique to the direction of relative motion of tool and work piece. 

Several assumptions were made for the orthogonal cutting: (i) the 
chip is continuous with mass density p unchanged in the cutting process; 
(ii) shear failure occurs on a shear plane As at an angle cp (see 
Fig. 2-5 for the geometry, and Fig. 2-6 for the shear failure model); 
(iii) the chip is in static equilibrium, as shown in Fig. 2-7; and 
(iv) the cutting force required R, is equal to the shear strength of 
the material T0, multiplied by the area of the shear plane As. 

To attack this problem, first the chip thickness ratio tc/t0 was 
geometrically related to the shear angle t and the rake angle a. The 
shear strain in the chip can also be related to ty  and a. Finally the 
chip velocity Vc may be related to the tool velocity V0. Applying 
force equilibrium to the chip, Merchant was able to obtain the various 
force relations. He obtained: 

| = tan(cp - a) (2-26) 
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Fig. 2-5    Merchants' metal cutting model 
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Fig, 2-6    Merchants'   shear failure model 
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Fig. 2-7   Merchamts'   force components on a chip 

where Q =  thrust force and P = cutting force.    Also, 

p 
T0 = ^- [sin ^ cos <p - tan(cp - a)  sin2"^] (2-2?) 

.! 

or 

p= ToAo  ;   COS^-cp)  
^^ sin i|f cos(cp + y - a) 

where T0 is the shear strength of the material. 

(2-28) 

Prom these results, one can see that since P, Q, AQ, cp, and a can 
be measured experimentally, T0 can be determined from eq. (2-27). 
Alternately, if TQ is known, and if a,  <p, ■</  and Ao are measured, the 
cutting force required, P, can be calculated from eq. (2-28). Figure 
2-8 shows P^TQAO versua a using qp - tan"1^ as a parameter. 

From Fig. 2-8, one can see that the cutting force required to 
break a layer of metal is directly proportional to the area of cutting 
and the shear strength of the material. It also shows that the catting 
force required is larger for *  smaller rake an^lc Q. Furthermore, 
friction between the tool and the chip also increases the cutting force 
needed. 
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Fig. 2-8 Cutting force P versus rake angle a 
relations from Merchants' theory- 

There are certain deficiencies in the theory. For one, it is .uupxied 
that the cutting force P is independent of the cutting speed Vc, which at 
least implies that the dynamic effect in metal cutting is not considered. 
Moreover, the assumption of a single shear plane does not agree with ex- 
perimental observations. The model proposes an external surface which is 
not smooth at the junction of the chip and the original surface. Theo- 
retically, an infinite shear gradient exists in this shear plane and an 
infinite acceleration of the chip is involved, which is physically im- 
possible. A transition zone of plastic deformation (chip formation zone) 
is definitely necessary to modify the original theory. 

Zorev [I?] described several modified models which included the 
transition zone. He discussed, for example, the models of Briks [18] 
and Krivoukhov [19]. He analyzed a modified model with chip deforma- 
tion zone which provides for smooth joining of outer boundaries of the 
cut layer as shown in Fig. 2-9. 

The chip formation zone takes the shape of a fan. The stressed 
state arising is characterized by the fact that the lines of the con- 
stant tangential stresses are a fan-shaped pattern of straight lines 
passing through the cutting edge. The initial and final boundaries of 
the plastic zone, OL and OM, are determined from the plasticity condi- 
tions. It is assumed that the transformation from the layer being 
removed into a chip occurs by successive shear along a family of slip 
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Fig. 2-9 Chip formation zone 

lines passing through the cutting edge 0. Shear along the second family 
of slip lines is considered to be comparatively small, and therefore 
is neglected. The direction of the shear lines is taken to coincide 
with the direction of the lines of maximum tangential stress. 

As in Merchant's treatment, again the shear train is related to 
geometry. The shear stress acting on a shear plane is related to the 
resultant force on the chip by considering the equilibrium of the chip, 
neglecting the moment acting on the chip. Experiments have shown that 
the shear stress obtained for the initial chip formation boundary is 
20^ too large. Zorev modified the shear angle > to \|r* to offset the 
discrepancy. The necessity for this modification is that the actual 
slip lines are not necessarily straight as proposed earlier. Actually, 
they are more like those shown in Fig. 2-10. 

By these procedures, Zorev was able to obtain a more accurate 
cutting force, the final, the outer, and the initial boundaries of the 
chip formation zone, the principal axes of deformation and the true 
deformation of the chip. The resultant force on the tool has the 
expression: 

R = 
cos 

T ^ 2n%&i _ 
(1!*+ u)) sin 'lfL-*(0.9 - 0.5 cot ti) 

(2-29) 

where ^i*is the modified angle, which is about 0.8 ^ 
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Fig. 2-10 Lines of slip in the chip formation zone 

Evans [20] considered the problem of plowing brittle materials (coal) 
with a symmetric shaped wedge. A scheme similar to Merchants' metal 
cutting mechanics was proposed in that the chip is in static equilibrium. 
However, chips formed in plowing brittle material are discontinuous and 
the fracture mode is assumed essentially tensile in nature. 

The model to be treated is a right-angled quarter-space of brittle 
material, as shown in Fig. 2-11. The breakage curve is assumed to be a 
circular arc initiated from the tip of the wedge. The chip is acted upon 
by three resultant forces. The tensile force T is the resultant of the 
tensile stress acting along the circular arc. The force R' making an 
angle cp with the normal of the tool surface is exerted by the tool. 
Thirdly, a concentrated force S, acting on point D, produces static 
equilibrium of the chip. 

Fig. 2-11 Evans' plowing pioblem 
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Immediately before the fracture occurs, the stress acting on the 
circular arc is assumed to reach the tensile strength of the material 
crtod« Thus, T can be expressed as a function of denth of cut d, and 
angle 0. Equilibrium of the chip gives P, the horizontal thrust as e, 
function of 0  and a, multiplied by ai0d.'}  thus 

P = 21*' sin a 

 2crtQd(l + cot?e) sing(a + cp)   
h/d + 2 cot 9 sin(a + 0) cos(a + <p) - 2 sin2(a + <p) 

(2-30) 

The assumption of minimum work done by the horizontal thrust P, 
i.e., dP/^0 = 0 ia employed. In addition, the findings of Evans and 
Hirrell [21] are used; namely, that the force required to push a wedge 
in normal to a face can be accounted for in terms of a "penetration 
resistance" closely allied to the compressive strength aco of the coal. 
The resulting two supplemental equations are then 

^ = cot2e sin(a+<p) co8(a+q>) + cot 0 [|  2 sin2(a+<p)l 

- 8ln(a+qp) cos(a+cp) = 0 (2-31) 

P = 2aCoh (2-32) 

From the last three equations, one can solve for P as a function of 

a, with qp and K = 2ca (K =. 10 for brittle materials) as parameters. 

The results are plotted in Fig. 2-12. The angle 0 can also be calcu- 
lated. Fran Fig. 2-12, it is readily seen that the effect of parameter 
K is small (for cp = 0°). This , in turn, ijnplies that the penetration 
of the wedge before breakage takes place is small. If one assumes that 
the penetration is negligibly small, the expression for P is simplified 
to be 

P = 2cTtod  sinjq + y) 
1 - 8in(a + (p) (2-33) 

2n^o3o°2"33) was used to piot the resuits in F±ß'2-12 frr *=io» 
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Flg.  2-12    The horizontal thrust force P versus 
the half-wedge angle a 

Experiments were carried out by Bvajis on several coals.    The 
results compared favorably to his theoretical results.    However, a 
discrepancy was noted in the theoretical and experimental tensile 
strengths.    Evans attributed this discrepancy to the assumption that 
the mode of failure is a sudden unifom disruption, which does not take 
into account the crack propagation effect.    He proposed a way to com- 
pensate for this effect by assuming that the tensile stress varies along 
the circular arc according to the law ato(x/£)n.    Comparing with the 
experimental results, he found that n ^ 8 gave a good result. 

Evans  [22] continued his study on plowing to consider the effect 
of bluntness of the wedge.    The geometry of the problem as shown in 
ng.  d-13.    He assumed that the compressive force on the half-band of 

the wedge needed to initiate the crack is of the f6rm Sp (—fd, where 

ac is the compressive stress and m is a generalized parameter to be 
determined  (which was found to be in the vicinity of ».    Again, the 
scheme of a tensi ,.e failure along a circular arc was assumed.    The 
cnip equilibrium condition plus the minimum work hypothesis enabled 
the horizontal force on the wedge needed to initiate fracture to be 

ÄS; hHbSLeTof zero peiletrQtion cf the *****b^™* 

L 2 sine cos(ö + a^ + 2      (^)(d j  (J 
cos(ü + ü+qp)   /J 

(2-3^) 
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Fig.  2-13    Evans*  bliint wedge plowing model 

where the angle 0 is given by 

cos (20 + q + cp)      om-i/VcVbVn        , , 
I - cos 20      = ^    teXdj   cos(a + «P) (2-35) 

Experimental results on Cwintillery coal were given for comparison. 
He found that if m = 2/3, his theoretical results were very close to 
the experimental ones,  as shown in Fig. 2-lk. 

o 

3 - 

2 - 

1             I 

Theoretical/, 

- 

yy Experimental 

/ 
^ 

r 

I              i 
0.1 0.2 0.3 

d 
Fig. 2-lU Comparison between experimental and 

theoretical results, continuous cutting 
with blunted picks 
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Recently, Nishimatsu [23] has treated a two-dimensional rock cutting 
model. He observed that the failure process of rock cutting is as given 
in Fig. 2-15. The crushed zones can be divided into two categories: 
(i) the major crushed zone and, (ii) the secondary zone. The tool first 
chips off several small pieces (minor chips), then a large fragment of 
rock is fractured (major chip). This process repeats for the entire 
cutting process. 

: 

li 

Fig. 2-15 Failure process of rock cutting 

.. 

With the above observation, the author proceeded to analyze the 
major chip crushing model as shown in Fig. 2-l6. 

■ 

■ I: 

I 
I 
I 
I 

Fig. 2-l6 Stress distribution and cutting forces for 
orthogonal rock cutting 
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p = p°(iir9 - ^)n (2-36) 

where  (A,0) is the polar coordinate of a point p on line OB    and n is 

^Äf^f ^ f\Ct0r t0 be dete^ed!    FurSe^erhe    ^ 
assumed that the stress p has a constant direction alone AB    La thP 

the^' f?rCe R^11 be in ^^rivra with the aSin^ ^cTp   from 
the tool,    m so doing, Po in eq.  (2-36) can be found to be * 

p0=.(n + l)(^)n+1
F (2-37) 

i     t  
n + 1 sin 0 tan k sin(9 - a + y) cos(0 - a + qp) 

(2-38) 

^f!      +        ^ ^f181 i*1*1™ **&■* or the material and T0 is the 
shear strength of the material.    The direction of the line 0? on which 
the failure stress acts should be the line which makes the cutting force 
a mlnmum.    Thus the resulting cutting force is found to be 

Fo = Tot cos k 
n + 1 1 - sin(k - a + qp) (2-39) 

^U \±S  a ^^  ^^i00 of the depth of cut t. The horizontal 
cutting force P and the vertical thrust Q are 

P = Fc cos((p - a) 

Q = Fc sin(cp - a) (2.140) 

Nishamatsu also gave experijnental values of P and Q versus rake angle 
a for sandy tuff and cement mortar.    The forces were measured with a 
circular plate-type dynamometer.    He found that cp is a linear function 
of rake angle a as shown in Fig. 2-1?.    The experimental cutting force 
iS ? ^f fTct±on of t as Predicted by the theory.    The stress 
distribution factor n is found to have a value 

n = 11.3 - 0.18 a 

where a is expressed in degrees. 

(2-ia) 

. 
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Fig. 2-17 The angle of friction of rock cutting 
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Svensson and Freshwater [2k]  gave some experimental studies on rock 
cutting by employing a photoelastic technique on Catalin 800 and poly- 
styrene. Fringe patterns for various cutting processes rere obtained 
and he was able to deduce the stress distribution during cutting. From 
his studies, he made the following conclusions: 

A photoelastic stress analysis of chip formation in 
brittle materials, Catalin 800 and polystyrene, has established 
that chip formation is a process of crack initiation and propa- 
gation due to tensile stresses normal to the crack path. No 
justification could therefore be found for the application of 
any analysis based on a shear theory of failure. 

The results show that ftracture begins at a very small tool 
penetration and the crack propagates slowly whilst the cutting 
force is increasing. At sane critical crack length, propaga- 
tion becomes more rapid and the cutting force decreases 
rapidly. The photoelastic analysis shows there is an intense 
concentration of tensile stress in the ijnmediate vicinity of 
the incipient crack. This stress rapidly decays and over 
the latter portion of the completed crack path, the normal 
stress beccoes compressive. The stress distribution along 

SfJv0!:^0 Path' exCept for re^ons  near the tool tip, agrees 
with the theoretical results obtained by Shepherd. 
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The crack path is not a principal stress trajectory 
and shear stresses of the same order of magnitude as the 
normal stresses act along most of its length. Near the 
tool tip, however, the stresses normal to the crack path 
are principal stiesses. Equilibrium of the incipient 
chip is therefore maintained by the tool force acting on 
the chip and the normal and shear stress distribution 
along the crack path. This stress distribution is far 
more complex than that assumed by Evans. Other observa- 
tions made during the investigation showed that the crack 
path was not a circular one. As the crack length in- 
creases, the bending effect of the tool force becomes 
more pronounced. This causes a rotation of the principal 
stress directions such that the radius of curvature of 
the resulting crack diminishes as it penetrates further. 

There are two aspects which are of importance in 
studying the machining of brittle materials. 

(a) The maximum force required to Initiate the crack, 
(b) The energy required to remove a unit volume of 

material. 

From the results of these investigations it appears 
that the maximum force is largely dependent of the depth 
of cut but would possible depend upon depth of cut in 
addition to tool angle. 

. ; 

Further work is necessary to establish the mechanism 
of crack initiation, the concept of a critical crack 
length (which governs the maximum force) and the effect 
of tool angle on these. 

Other methods of rock cutting which may be applied to layer cutting 
analysis include crater indexing with a sharp wedge or with a blunted 
tool. Garner [25] gave possible fractures for crater indexing (Fig. 
2-l8) and Cheatham [26] gave possible slip lines for indexing in a 
plastic rock (Fig. 2-19). 
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Fig. 2-18   Garners possible fractures for crater 
indexing 

Slip line 

Fig. 2-19 Cheathams* possible slip lines for 
indexing in a plastic rock 
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3. SONIC ROCK DRILLING 

Study of the basic drilling configuration was begun in the first 
year of sonic rock cutting and has been previously reported.* In the 
current phase of work, the basic sonic drilling techniques previously 
developed were utilized, with certain modifications and refinements. 
The basic technique was to force a P-ll transducer vertically downward 
with a static force. A small, bouncing mass drilling tool at the tip 
of the transducer performed the cutting action through repeated impacts 
with the rock surface. This impact coupling drilling technique also 
has been previously described. 

The basic parameters of the drilling process have been identified 
as the transducer drive voltage, the mass and geometry of the impact 
tool, the static force and the rock properties. A limited number of 
tests were conducted to establish optimum static force values. Partic- 
ular attention was given in this phase of work to various tool designs. 
The parameter of drive voltage was held constant during most of the 
drilling tests. Some attention was given to using variable frequency 
versus fixed frequency drive to the transducer. This phase of work 
continued drilling tests in Indiana limestone and initiated drilling 
tests on granite. 

3-1 APPARATUS 

The basic drilling apparatus has been described and shown in an 
earlier report.**    Some modifications were incorporated in this apparatus. 
First, the external static force applied at the nodal point of the 
transducer by dead weights was replaced by a pneumatic cylinder capable 
of applying static forces of up to 200 pounds.    Secondly, an air-vacuum 
system has been incorporated for removal of rock debris.    This system 
includes an air hose on the one side of a cylindrical-shaped plastic 
container at -bhe transducer tip, and a vacuum system on the other side. 
The advantages of this set-up are (l) increased drilling penetration 
rate due to debris removal from the cutting surface,   (2) considerable 
noise reduction in the drilling process,  (3) prevention of dust from 
escaping to the laboratory, and (U) removing some of the heat from the 
sonic tool.    Although items  (2) through (^) are desirable benefits, the 
main objective of the air-vacuum system was for rock debris removal.    A 
schematic of the modified system is shown in Fig.  3-1« 

* See Annual Technical Report on previous Contract H0210010,  "Fundamental 
Studies in the Use of Sonic Power for Rock Cutting," December, 1971. 

-♦*Ibid., p. 37- 
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Fig.  3-1    Drilling apparatus 
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A syston was devised for automatically measuring and recordinc det^th 
of penetration versus time during drininT    The d^f««-. ^ ?        ?      P 

motion was indicated by the electric^ St^t «J ^f ^f of transducer 
This siauLL was    in tn.rn    L! ! ,    ^ ^    0f a ten-turn potentiometer. 
there tftn ^ r ' Zt    t0 ^ elect™^ processing unit and from 
TiZairoTli J? ;    The processing unit also generated a time b^e 
£m    3 2 recorder-    A ^Ple schematic of the system is shown 

3-2    TOOL DESIGN 

• • 

A number of tool configurations were developed during the course 
of work.     It will be noted that tools used in the earlier pha^e of work 
on rock cutting* had large amounts of flat surface area on the impact 
race of the tools.    Such designs were highly inefficient,   since rock 
penetration occurred mainly by crushing action.    Tool designs during the 
current phase of work were aimed at reducing flat areas and increasing 
edges where stress concentrations could occur. 

shown^??8 °VeV*ral of the *«*» tested for limestone drilling are 
iJSSfS      g"J"3'    " WaS ^enerally found that finely pulverized 
t^f    %rUldJ0mpaCt in the recesses ^ material egSss holes in 
these configurations      Haotographs of a second series ff tools i      hown 
Wf ?*•?.•    " VaS fOUnd that the configuration of Fig.  3-lf(b) yielded 
Ld fSricSL'f5^3 in

+
ldjIiestone-    anally, a configuration disced 

S!    IS Ü        ür ßr«1"6 cutting is shown in Fig. 3-5.    Unfortunatelv 
time did not pennit cutting tests to be conducted using thifSS!!' 

3-3    DRILLING RESULTS IN LIMESTONE 

the e^S6^ S1^/".8 ^ "^«t«« ™™ carried out to assess 
Sr TSS #1    2 T110U in>1

StatiC f0rCe 0n drming-    This ^ *™ 
Fig   Ti   ^2L i.T    \ .T ? lig- 3-3-   The results are sho^ m 
lu' v      *   There is a marked lp-CK of uniformity in these results in tw 
the characteristics of each  curve differ.    ThS, Tool #J e^bits L 
irregular behavior with Increasing force, having a pronou^Sd dip S 

St" nfdS^th'001 ^ f10W? a m0de^e but contL^'ncr Li^g 
S ciuÄ MLt^T51^ lOTri While T001 #3 shows m^ed "ceases 
SoSt i^plds^ rCeS-    T001 #1 eXhibitS a We^ maxi— Point at 

did Jf6 ^ C°ncJ:usion ^^ fr°» these results was that static force 
did not appear to be a highly sensitive controlling parameter of the 
drilling process.    Consequently,  in most later drmLg tests    static 

fS^a^lf^f 200 r**8' Which Was the Ä^S; obt^able w.th the available air supply, pneumatic cylinder system. 

*Ibid. P- 23, 29, 33, 3^, 
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Fig.   3-^    Second series of tool designs 
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A specific set of tests was run to assess the effectiveness of the 
air-vacuum system on improving drilling.    A specific tool, static force 
value and drive voltage was selected,  and depth of penetration versus 
time measured with and without the air-vacuum system operating.    The 
results  are shown in Fig.  3-7.    Without the air-vacuum system to remove 
drilling debris, it is seen that a point is reached at which penetration 
practically ceases  (lower curve of Fig.  3-7 at about 90 seconds).    With 
debris removal, it is seen that a steady penetration rate is achieved. 
In both cases, initial penetration rates are quite rapid and about 
comparable.    This is to be expected in the early stages wir en both the 
lack of debris and the aspect of cutting into the Initially flat sur- 
face ccmbine to speed cutting. 

The influence of variable frequency versus fixed frequency drive 
to the transducer was also assessed, with the results shewn in Fig. 
3-8.    The basis for conducting this test was the known difficulty in 
achieving a transducer resonance frequency at the fixed power supply 
frequency at high voltage operating conditions.    Secondly, there was 
also the known problem of shifting transducer frequency during operation 
due to temperature effects.    A drilling test 0.0 fixed frequency was 
conducted.    Then, a drilling test was conducted during which the drive 
frequency was varied during the test in a manner to maintain peak power 
into the transducer. 

As is evident from Fig.  3-8, the difference in penetration becomes 
fairly significant for increasing time (say, beyond 30 seconds).    The 
probable cause of fall-off of the fixed frequency data is transducer de- 
tuning resulting from temperature increase within the transducer. 

Figures 3-9 and 3-10 show penetration tests for several of the 
cutting tools  (Tools #3> 7> 8 and 6).    The data shown was obtained with 
the automatic recording equipmtait previously described and indicated 
in Fig.  3-2.    All of the results show the similar characteristic of 
initial rapid penetration (up to 120 in./min initial rate) and then a 
reduction to a steady cutting speed.    The best results obtained were 
those for Tool #6 (Fig.  3-10, lower trace), which had the following 
performance characteristics: 

Drilling Test, Tool #6 
Material:    Indiana Limestone 
Hole diameter:    1 l/k in. 
Drilling rate  (steMv):    11 1/2 mi/min 
Volume removal rate:    ih in.3/min 
Specific energy:    10,700 W-sec/in.3 

3-1»    DRILLING TESTS  IN GRANITE 

As  in layer cutting, difficulties were encountered in cutting 
granite.    Unlike the layer cutting work discussed previously, where 
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»THä success was finely achieved, the efforts at drilling in granite 
were essentially negative throughout. The various cutting tools developed 
for limestone drilling had little effect on granite specimens. Hardened 
steel tools dulled in matters of seconds or fractured at stress concen- 
tration points. Drilling tests, while frequently ineffective, we>-e 
nearly always spectacular. The region of the tool-rock interface would 
r-ac.: a red heat and showers of sparks would be thrown from the impact 
area. 

Several tejts were done on granite drilling using slightly unusual 
types of tools. The main tools were carbide-tipped steel and pieces c* 
ceramic. The ceramic tools were made of zirconia. It was possible to* 
drill about 1/2" into granite boring a S/V-diameter hole. The ceramic 
would chip into smaller pieces. It appeared the drilling was achieved 
by heating and fracturing of the rock. As the ceramic was impacted by 

A 1+'  the interface between the ceramic and granite actually became 
red hot. Next, an imnact tool with two carbide inserts was tried, with 
the inserts mounted in a sloped manner. During drilling the carbide 
tips penetrated the granite to a depth of 3/16". The flat surfaces of 
the tool then Impacted the rock ana no further drilling was achieved. 

Drilling tests were also done using a sharp wedge tool made of 
tool steel. Before using the transducer, tests were done on a static 
testing machine. With a few thousand pounds of force it was possible 
to force the wedge tool into granite about 3/l6" with no signs of tool 
deformation. The same tool was then used with a P-ll transducer drill- 
ing into granite. The tool penetrated about 3/l6" with considerable 
wear. A possible method of reducing this wear would be to use carbide 
tips and rotate the tool. 

The end of the project work period arrived before tool rotation 
schemes or additional drill configurations could be tested. For example, 
the tool configuration of Fig. 3-5 was not completed in time for testing. 
Although it is likely that these modifications would have somewhat 
improved granite drilling, it is questionable whether drilling rates 
of practical significance would have resulted. 
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k.    ANALYSIS OF ROCK DRILLING 

: . 

. . 

The feasibility of utilizing sonic energy for drilling brittle 
materials, such as concrete or rock, has been under study for some time. 
The basic process employs a sonic transducer mounted on a support 
structure and a slug of metal, called the "tool", as shown in Fig. h-1 
and as previously described in this report. The tools are of a general 
cylindrical shape with various tip and end geometries. Sonic energy is 
transmitted by means of impact coupling, or in other words, by repeated 
impact of the tool between the transducer and load at rates of hundreds 
to thousands of cycles per second. The tool impacts against the rock 
after impacting with and acquiring energy from the vibrating transmission 
line. Some energy of the tool is transmitted into the rock and results 
in some fracture of the rock surface. The tool then rebounds from the 
rock surface due to elastic recovery and again impacts against the 
transmission line tip. Because of the energy withdrawal from the trans- 
ducer by the tool during tool-line impact, the internal energy of the 
transducer is at a lower level right after impact. It recovers before 
the next impact occurs. 

Although the impact coupling process is rapid and somewhat random, 
it is a continual sequence of two clearly defined events:  (l) impact 
and rebound of the tool against the vibrating line, and (2) impact and 
rebound of the tool fron the load. Therefore, a rational analysis of 
impact coupling becomes possible and can be divided into three areas of 
study — tool-line impact, tool-load impact and transducer analysis. 
Each area of these analyses involves several controlling parameters. 
The mass and tip geometry of the tool, the rock properties, and the 
energy level of each impact affect the incident-rebound velocity rela- 
tionship as well as the characteristics of the impact zone. The end 
geometry and mass of the tool and the geometry and vibration amplitude 
of transmission line tip contribute to the characteristics of tool- 
line imr^ct. The transducer is a rather complicated energy conversion 
system. Many parameters, aside from the supplied terminal voltage, 
affect its vibration characteristics. All of the previously mentioned 
parameters interact with each other; any one parameter can easily affect 
several others in the overall, performance of the sonic system. r.he 
static force applied by the support structure is another factor in 
determining the energy transfer of the impact coupling process. 

A considerable amount of work has been done previously on var..ous 
aspects of the sonic impact coupling process, with a fairly complete 
summary being given in [l],* pp. 18^-186. Similirly, study in the 
area of transducer characteristics has been extensive, although much 
is yet unknown on the performance of these devices. McMaster, Dettloff 
and Minchenko [2] reviewed the basic principles of piezoelectric 
materials, while Dettloff and Minchenko [3] studied the resonant horn. 

' ■ 

■»Numbers in brackets refer to references at the end of this chapter. 
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The overall transducer cnaracteristics was first touched on from the 
viewpoint of classical circuit and transmission line theory by Hoffman 
and Swartz [k].    Following this line of approach, Mahtan and Graff [5] 
developed the transfer function of a sonic power system. Graff [6], [?], 
in 1969, reviewed the problems of vibrations of crystals and stepped 
horn resonators. The energy dissipation in a vibrating transmission 
line was analyzed by Fretwell [8] and Graff [9]. Ma [101, as part of 
an extensive study of the transducer, has measured the transient response 
of the transducer to irapt-ct. In Section 5 of this report, results 
obtained by Feng on transducer analysis are given. A more complete 
description of transducer studies appears in [11]. 

In the analysis of the rock drilling process, work on the tool- 
rock and the tool-transmission lines has been previously reported.* 
Additionally, a qualitative explanation of the general interaction 
process has been put forth.** In the first section of this chapter, 
certain additional information on tool-rock impact is presented. In 
the second section, additional results are given in the tool-transmission 
line aspects of the process. The third section of the chapter will bear 
additionally on the transducer aspects of the process. 

In section four there is presented an analysis of the effects of 
various parameters, such as drive voltage, transducer energy storage, 
static force, tool-load and tool-line parameters on drilling. Finally, 
all the analyses are united in the prediction of sonic drilling rate 
of rocks. A numerical example is given at the end of the chapter. A 
comprehensive treatment of all aspects of the problem may be found in 
[12]. 

k-1    TOOL IMPACT ON ROCK--SPECIFIC ENERGY 

II 
■r. 

Previous results on sonic tool impact on rock have appeared in 
[1], Chapters 1 and k.    During the current phase of work, additional. 
tool-rock impact studies were conducted using apparatus and techniques 
described in the cited reference. The objective of the work was to 
establish specific energy data for rock. 

4. 

I 
r 
1 

To study the specific energy of rock removal for granite, a tool 
design having a sharp tip made of carbide inserts was used. The tool 
was propelled into a series of Impacts with the rock surfac;; at a 
specific location. The total energy used was the sum of ail the indi- 
vidual xmpact energies, and the volume of rock removal was obtained by 
dividing the total weight of the chips and dust collected by the average 
density of the rock. 

* Reference [l], Part II, Chapters 1, k  and 5. 

**Ibid, Chapter 6. 
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Figure k-2  shows the relationship between incident velocity V0, 
specific energy es, and volume v for the tool impacting on granite. 
The tool design is also shown. A linear relationship between v and V0 
is observed. This result strengthens the belief that the higher the 
energy level per impact the more fracture occurs for an equal amount of 
work. Rock as well as concrete is a brittle material. It is weak in 
both tension and shear. Fracture occurs when the tensile and shear 
stress reach a certain level. High energy level impact would cause not 
only more fractures but also cause them to propagate a greater distance. 
Therefore, it would cause larger fractures than would a low energy 
impact and save energy by not breaking rock into smaller fragments than 
necessary. 

, i 

k-2    TOOL IMPACT ON A VIBRATING TRANSMISSION LINE 

Many aspects of tool impact on a static transmission line were 
described in [1], Chapter 5, including the effects of a slightly curved 
tool surface on the rebound. The analysis of the drilling process re- 
quires consideration of impact on a vibrating line. Feng [13] has 
solved the impact problem of a spherical ball against a vibrating 
transmission line, with some of these results also reported in [1^]. 
The approach used by Feng will be applied to the present case of a 
cylindrical tool having a slightly curved contact surface impacting 
a vibrating line. 

The tip displacement of a resonant transducer (or transmission 
line) can be expressed as: 

where 

^(t) = c^ sin(ü)t + <p) (^-D 

I I I 
■ 

i 

(p = phase angle 
ci = amplitude of tip displacement 

u = angular frequency of resonance 
t = time measured from the start of tool-line impact 

The displacement fa  of the center of the transmission line tip 
during impact is a canbination of:  (i) the displacement due to trans- 
ducer tip vibration [UQU) - UQCO)], (ii) the displacement due to the 
stress wave traveling down the transmission line, Ux, and (iii) the 
local deformation, v1.    The positive directions of ß1)  Uj. and Wj, are 
shown at the upper left hand comer of Fig. h-3.    Therefore, we have i 

ft. = Ui + Wi + UoOO - UoCO) 

Similarly, the displacement at the tip of the tool, ßZi is 

ßs = u2 + W2 

ih-2) 

{h-3) I 
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where us is the rigid body displacement of the tool, and w2 is the local 
defer nation of the tool tip.    The positive direction is assumed to be 
the same as ßx. 

IJurlng the course of impact, 

ßx = ßa 

or 

W2   - Wi   = Ui   -  U2  +  Moit)   -  UoCO) (MO 

The impact period is short and the transmission line is usually- 
long enough that the wave front of the reflected stress wave will not 
reach the tip during this period.    We also assume that the stress wave, 
•hie to previous impact, has been damped out.   Then the displacement u 
can be expressed as 

and 

u(x,t) = f(x - Cot) 

Prom eq.  (^-5)> we can obtain 

ü =  -   Cof'U -  Cot) 

F = EA^=EAf,(x- Cot) 

(^-5) 

(^-6) 

0*-7) 

Eliminating f' (x - c0t) in eq.   {k-6) and eq.   {k-7), we obtain 

F (^-8) u = - 
pAco 

and 

UL = uo(0,t) = 
pAco    x = 0 (^-9) 

By considering the conservation of linear momentum of the tool, one 
gets the following equation 

dug 
dt 

1   /"T 
= Vo + i /    F dt (U-10) 

Substituting eqs.   (^-9) and (U-10) into eq.  (U-U), and defining the 
"approach", a, as (vx - wa)> we have 

Ä = Vo + ^ /"T F dt + -~-   v_n - ciw cos(ut + <p)        (1+-11) 
"     m ./Q P "cn    x = u 
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Hertt contact theory states that 

F = -Ka3/2 (^-12) 

vhere K is a constant depending on elastic properties and geometry of 
the contact surface, and is given as 

K = 2ERi/3(l - v?) (^-13) 

for a flat transmission line tip where it is assumed that tool and line 
are made of the same material.    Also, R3 is the radiuf, of curvature of 
the tool end, and v is Poisson's ratio.    With eqs.  (U-ll),   (4-12) and 
(4-13),  a differential equation for a is given by 

■i3a .     F     dof3/3 ^ K    3/2 P    .   . 
^    p"^ ~dt~ + ma/    = ciw    sin(wt + CP) ih-lk) 

A computer prograjn similar to Feng's was written to solve the 
incident-rebound relationship for tools of different mass aaid various 
curvature at the unpact end. Figure 4-3 is a typical example of th.- 
Impact-rebound relationship for various tip vibration amplitudes. All 
the tools are one inch in diameter but with different tip and end 
geometries. The mass of the tools is designated as me. In the figure, 
a tool with curved surface of ten inches radius is used. The tool has 
a one-half inch equivalent length (me = i"); i.e., the tool has a mass 
which is equivalent to a flat ended rod of one inch in diameter and 
one-half inch in length. One observation that should be noted is that 
the rebound velocity is calculated in the sense of average as stated 
by Feng [13], because the actual rebound velocity v.ixies as to where 
the tool comes into contact with the transmission line tip. 

Figure 4-4 shows the results for four different values of me. The 
main purpose of such a plot is to examine the effect of tool mass on 
the rebound velocity. It is easy to see that the rebound velocity drops 
as the mass increases. The value of rebound velocity not only depends 
upon the mass of the tool but also depends unon the curvature of tool 
tip. 

4-3 TRANSDUCER VIBRATION 

As pointed out previously, study in the area of transducer charac- 
teristics has been extensive, yet, much is still unknown of transducer 
perfoimance. This holds particularly for the response of the transducer 
during and immediately after impact from the sonic tool. Thorough 
theoretical as well as experimental study is needed to get a complete 
understanding on this matter. However, it is not the purpose at this 
stage to go into detailed research in that area. Instead, it is simply 
to study the internal energy and tip vibration amplitude of a sonic 
transducer for the purpose of analyzing the sonic interaction process 
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and finding the power transmission of the transducer system. The trans- 
ducer response to impact will be modeled based on observed transducer 
behavior and basic vibrational principles governing solid materials. 

Ma [10] conducted an experiment in the study of energy removal and 
transducer recovery during tool impact. From this experiment, an inter- 
esting phenomenon can be observed. The recovery of the tip vibration 
amplitude (velocity as well as displacement) is along an exponential 
curve as shown within the dotted region of Fig. U-5. Two experimental 
results of such removal and recovery curves, after data reduction, are 
shown in Fig. k-6.    The ordinate is nondimensionalized with respect to 
the total amount of amplitude drop immediately after impact. Some 
theoretical background, in addition to the previous experimental obser- 
vations will be given to justify the resulting modeling of the recovery 
cf a sonic transducer after impact. 

For convenience of analysis, the discussion will start with the 
mos'o simple and basic piezoelectric resonator, a cylindrical sandwich 
type, as shown in Fig. U-7. Then, the results of this analysis will be 
expanded to the study of the vibration and damping characteristics of 
a more complicated sonic resonator. 

(A) . Forced Vibration of a Cylindrical 
Sandwich Type Resonator 

The most simple and basic piezoelectric resonator is the 
cylindrical sandwich type as shown in Fig. U-7. Because of its simple 
geometry, the analysis is straightforward compared with resonators of 
more complicated shape. 

Usually two kinds of damping exist in a vibration systeiu, 
viscous damping and Coulomb damping. In a sonic transducer, viscous 
damping is present within the metal and ceramic materials while the 
Coulomb damping exists as interfacial friction between the metal and 
ceramic parts. The viscous damping force is along the direction of 
particle velocity. In the sonic transducer, radial vibration is always 
coupled with longitudinal vibration even though the first radial 
resonant mode is usually a higher order mode than the first longitudinal 
mode. In the discussion of longitudinal resonance of a transducer, the 
effect of radial motion is usually neglected and the problem treated as 
one-dimensional. The direction of the Coulomb friction force in the 
sonic resonator is radial. The effect of interfacial friction on longi- 
tudinal vibration is, therefore, indirect. With the above arguments, 
the Coulomb friction and. viscous dampir.g force in the radial direction 
can be neglected if the approximation 1.3 made to discuss longitudinal 
vibration only. 

In a steady state resonance condition, the amplitude of longi- 
tudinal vibration is a constant. The force that the ceramic applies to 
the metal part also reaches a steady state constant amplitude. The 

! 
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Fig. U-7 Cylindrical sandwich type resonator 

following discussion analyzes the vibrational characteristics of a 
simplifiec'. model of a cylindrical sandwich type resonator as shown in 
Fig. k-&.    Two equal and opposite forces P0 sin tot are applied on a 
cylinder of length £  and area A at each side of the midpoint. 

P0sinwt P0sinwt 

2 

I 

i 

i 

.: 

Fig. k-8    Simplified model of cylindrical sardwich 
type resonator 
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Viscous damping in metal is usually of the Voigt type [15], 
[16 J.    The stress-strain relation can be expressed as 

ffx = Y ex + Y- -^ (U.15) 

vhere x is the direction of stress and strain, Y is the Young's modulus 
and Y' is a damping factor [1?],  [18].    The one-dmensional equation 
governing the cylinder is 

*s(AllW(^)-p*P (^-16) 

A(x) = cross-sectional area at point x 
u(x,t) = longitudinal displacement 

For the simplified model, we can express u(x,t) as an infinite 
series of orthogonal vibrational modes l%(x) as follows 

with 

«(«»*) =£ <Pn(t) Un(x) 

ün(x,t) = cosCpnx) 

(^-17) 

0,1 

Pn = T (n = 1,2,3,....) 

Using the principle of virtual work, a set of differential 
equations for (^(t) can be obtained as 

Mcrön + Wm + EnflPm = -2Po sin(^) sin(T) sin "* ^■l8^ 

where 

Mo = Ap£/2, Tfe = AX'm2n2/2l, 

Em = AYm?n2/2iJ Pm = .2P0 sin(^) sin(f) 

The transient solution of eq.  (h-lQ) is 

q^ = 2xp[-(Timt/2M0)]  {Am sin qmt    4- Bm cos qmt  } (»♦-19) 

where 

JEm      T^p 

^^•^-^-'-"■'-'■'- ■ 
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The steady state solution is 

P- 

where 
^ = ^ sin^t " ^m) 

Zm-lv"^) + _2 *m = 
'"Om 

Em - Mow' 

and, the steady state displaceaient us(x,t) is 

'-4     -P 
UgCxjt) =   XI   TTT" sin(wt " *m) COSC^QX) 

n = lwZm 
(»♦-21) 

When the exciting frequency to reaches the value [(Ej./!^) - (TJI/SMO)]'', 
the coefficient PI/UJZ! in eq.  (U-20) beccmes a maximum, and 

Pi   si    Pi    c -2Pn 5in(itaA) 
w^!      ^q! T^qj. 

(U-22) 

In this condition, the system resonates at its lowest mode because the 
terms higher than one in eq. {k-2l)  can be neglected in cQurparison with 
the first term. Therefore, 

u8(x,t) = ^ cos(^) sinCwt - ti) sin(^)      (4-23) 

Since Y1 (or ^2.)  is usually very small for metals, we have 

A^Cr 
Tll<ll 

It is known that [15] 

2jtl 

where 

Q (factor of merit) -.-. JL = Z± ^ 

F = resonant frequency, 
AF = bandwidth (between half-power points), 

I = internal energy,  and 
AI = energy dissipated in a cycle. 

Equation  (k-2k) can be rewritten as 

t2       V 120 ni<LL = 
V 

2i' 

(U-2U) 

(^-25) 

(U-26) 

J 

J 

;: 

i 
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Q is usust'JLy very large (on the order of 50 to 104), so we can neglect 
the second term in the radical sign and get 

TU<1I ** 
Art3cnY' 

21' 
(U-27) 

With eqs.   (U-19),   (U-23), and (U-27), we have for the general solution 
for the vibration of the resonator 

u(x,t) =    f;   expL-dirf/a^)]  {An sin(q.nt) + Bn cosCqnt)] cosf^) 
n = 1 \ £ / 

ibr^v     ^ cos(-r   sin(wt " ti) An^CoY V £/ (4-28) 

In actual operation, the value of P0 depends on the terminal 
voltage applied to the ceramics and prestress in the transducer.    These 
two variables are assumed to be fixed during vibration in this study. 
Another variable that affects the value of P0 is the previously mentioned 
interfacial friction.    Since the interfacial friction force depends upon 
the dynamic behavior of the transducer, the value of P0 is a function 
of time.    In the previous analysis, the effect of interfacial friction 
is neglected and the value of P0 is assumed to be constant to simplify 
the problem. 

The time factor Sn,.which is equal to 2^/^ in eq.   (4-28), 
is a function of Y'; the exponential coefficient exp(-t/Sn) represents 
the effect of damping in the system.    We know that 

^n 
Hn 

Since u2 « EX/MQ, we have 

where 

s   - 2Q     s^ ön _ —?■= "^ 

(4-25) 

(4-30) 

(4-31) 

(B)    Transducer Vibration and Recovery of 
Transducer Tip Amplitude 

In the previous section, the forced vibration of a simplified 
cylindrical sandwich type resonator was disnussed.    It was found that 
the resonator will vibrate in a natural mode if the exciting frequency 
is close to the natural, mode.    On the transient part of the solution, 
the time factor Sn depends on the damping characteristics of the 
materials used.    The amplitude of steady state vibration is controlled 
by damping as well as the voltage applied to the ceramics. 
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re.nn«fn    ^^^ obtained for a simple cylindrical sandwich type 
resonator will now be expanded to a more complicated resonator suc^as 
the P-ll transducer with body,  resonant horn and transmission line. 

afferent S lltl th\3m\t™* of sol^ion will exist, except with 
different mode shapes, time factor and steady state amplitude:  i e 
there will be a steady state solution with a lowest naW modelsthe 

LX^LS^10" " ^ thaJ0 m0de' ^ - -Plitude which iicreaLs as the temmal voltage increase« and damping decreases.    The transient 
eSLu^ t^Jift6 Serie

n
S
h

C-bi-^- of all the naJal llTel^l 
exponential tune functions. The time factors depends on aTL the damping 
characteristics of transducer.    In written form, we have the foJlSgf 

u(x,t) = AfxCx) sin(u)t - ti) 

00 

- £.  exP(-t/Sn)   [^ sinCqnt) + Bn cosC^t)} fn(x) 

(^-32) 

vhere fn(x) is the nth mode shape.   The lowest mode of vibration is 

pnp^r i    In f+!^ai, SinCe the mass of the t001 is rather small, the 
energy loss of the transducer for each impact is small compared to the 
total stored energy.    If, for example, a tool of mass 0.003^39 slug 
«^iTWV  ^^l ^^^ a transducer, which has a tip vibration 
amplitude of 1.15 mils, and the incident and rebound velocity of the 
tool are equal to 66.6 in./sec and 111 in./sec,  respectively; the 

£7?. ^SS
+
0n   nSf ^railsducer is e^ ^ the energy gain of the tool 

^ to S PS ^■"1^While the :Lnterna:L ener^ is approximately eq^al to 17.25 in -lb.    The percentage of energy loss is about 7.5W. 

n^V +
e-enerSr l0SS Cf the trailsduc^ is small per impact, the mode 

of vibration after impact is essentially f^x); i.e., the vitue of A, 
and Bn are small compared to A. ^ "n 

According to previous analysis, 

Sn = Si/n2 (4,33) 

This tells us that the higher -order tems in the transient solution 
damp out much faster thin the lowest mode.    Therefore, another assump- 

ln    (i'Sf0 nere t0 niSlect the effect of higher order terms in eq.   (4-32), giving 

u(x,t) « f1(x){A sin(ut - tJ - expC-t/Sj^  sin(q1t) + B1 cos^t)]] 

^n^Sr equation rePreSentS approximately a hazmonic vibration with 
gradually varying amplitude.    In another words, the recovery of the 
transducer from energy loss due to tool-lin. impact is exponential. 
The above analysis has been confiimed by the experimental results 
lltlt, !f L"1 ^iS *eCtl0n-    Therefore, we may model the recovery of 
transducer tip vibration amplitude c(t) as follows, 

9^ 
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c(t) = C - A exp(-t/S) (U-^) 

l! 
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T 
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where C represents the maximum amplitude at the no-load condition, A 
is the amplitude drop of the transducer after impact and is dependent 
on the energy drain by the tool.    Immediately after impact, t = 0, the 
tip amplitude is 

c(0) = C - A 

As time goes on, c(t) in creases in an exponential order with a time 
factor S which depends on the total damping characteristics of a sonic 
transducer, i. 
considered. 

e., the damping in ceramic as well as in metal is also 

(C) Internal Energy and Tip Vibration Amplitude 

The ability of a sonic transducer to do work is dependent on 
the amount of energy in the transducer. It is known that internal 
stored energy in a longitudinally vibrating resonator is in the form of 
strain and kinetic energy. The amount of energy is proportional to the 
square of maximum displacement (or amplitude) at any point. In Section 
U-2, the tip vibration amplitude was used in discussing the tool impact- 
rebound relationship on a vibrating transmission line. The amount of 
tip vibration amplitude will again be used as the measurement of the 
Internal energy of a transducer. 

It is not difficult to find the stored energy in terms of tip 
amplitude in the resonant horn and transmission line once the mode of 
vibration is known. It is more difficult to find the energy which is 
stored in the body of the transducer. This difficulty arises from the 
complicated structure of this part. An approximate value is obtained 
by assuming the approximate mode shape in the body and neglecting the 
energy stored in the ceramics. The proporcional constant, K, for the 
P-ll transducer with a 10-inch transmission line in the equation 

I = K c' (U-36) 

is found approximately to be equal to 11.2 in.-lb/^mil)2. In this 
equation I is the internal energy, and c is the tip vibration amplitude. 
The energy stored in the body of a stepped transducer has been calcu- 
lated and is much smaller than in the resonant horn and transmission 
line. Hence the approximate value of K thus obtained is expected to be 
close to the true value. The reason is that the stored energy in the 
resonant horn and transmission line can be calculated exactly while 
approximation is made only in calculating the stored energy in the body. 
If the energy in the body is small, the approximation just made would 
not affect the total stored energy drastically. The value of K can be 
considered as a measurement of the energy storage capacity of a sonic 
transducer. The larger the value of K the more the energy can be 
stored. 
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The value of the tip displacement is important In the impact 
coupling process and difficult to obtain from purely theoretical' analysis 
The value is also dependent on the terminal voltage of the electric 
supply and temperature of the transducer system. An experiment was 
conducted to find the effect of temperature and voltage on the tip 
amplitude of an unloaded P-ll transducer with a ten-inch transmission 
line  It was found that the amplitude of vibration increases as the 
applied voltage increases as shown in Fig. k-9.    Figure k-lO  shows the 
peaX-to-peaJc amplitude and power supply as a function of frequency of 
vibration. The applied voltage is approximately 1,200 V. 

To find the effect of temperature change on the vibration 
characteristics of the P-ll transducer with a 10-inch transmission line, 
a set of curves similar to Fig. 4-10 but at different temperatures is 
shown m Fig. U-ll. The resonant freiuency, amplitude and input power 
varies as the temperature changes. At room temperature the amplitude 
is largest while the power required to maintain steady state vibration 
is least. As time goes on, the heat accumulates in the transducer and 
causes the temperature to rise. The amplitude drops drastically while 
more energy is required to maintain resonance, which means that more 
energy is consumed as heat and acoustic noise at high temperature. 
Undoubtedly the temperature has a large effect on the properties of the 
piezoelectric material since the properties of metal are fairly stable 
for such smaJ±  ranges of temperature change. Another important fact is 
the drop in resonant frequency of the system as the temperature rises. 
This is not particularly desirable if a single frequency power supply 
is to be used. ^ ^ 

k-k    DRILLING ANALYSIS 

As stated previously, the sonic rock cutting process is achieved 
by using an intermittent tool between the transmission line tip and the 
work surface. The tool acquires energy from impacting with the vibrating 
transmission line tip; it then impacts against the rock and rebounds 
from the surface. During impact between tool and rock, the tool loses 
part of its energy and causes some fracture of the rock. 

The resonant frequency of a sonic transducer can be affected by 
many factors, such as voltage, temperature, and static force  The 
direct result of these detuning effects is to change the tip vibration 
amplitude. Since the sonic transducer is a high Q system, any small 
amount of frequency change can affect the tip vibration amplitude 
drastically. This, in turn, reduces the capability of the transducer 
to do work. Future efforts should be given to making the transducer 
resonant at all times during operation. In other words, the system 
interaction only on the assumed conditions that the transducer is always 
in a resonant state, and that the tip vibration amplitude is a constant 
during steady state, no load operation will be discussed. 
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(A) Internal Energy During Steady State Operation 

The recovery of the transducer after tool-line impact has 
been discussed. It was fourd that the tip vibraJ. Ion amplitude will 
recover in an exponential m;mner. If no further impacts occur, the tip 
vibration amplitude will eventually reach the steady state no-load 
amplitude. In actual optration, the tool will bounce back and forth in 
the gap between the transmission Xlne tip and load. The impacts c? the 
tool against the tip can be at hundreds and even thousands of times per 
second. The tip amplitude has no chance of fully recovering back to 
its steady state no-load condition because the second impact follows 
the first one in a short period. Hence, the internal energy during the 
steady state, no-load vibration represents a majdmum value. 

As discusssd in yection ^-3, the tip vibration amplitude is 
assumed to be c(t) = C - A exp(-t/S). The corresponding internal energy, 

according to eq. (U-36) is 

I(t) = K[C - A exp(-t/S)]: (^-37) 

Figures U-12 and U-13 represent the variation of tip vibration 
amplitude and internal energy during operation. The tip amplitude and 
internal energy at the steady state unloaded condition are C and IQ, 
respectively. When a load is applied to the system, the tool acquires 
energy from impacting with the transmission line tip. As time goes on, 
the amplitude and internal energy recovers due to the power supply 
input. Before the transducer recovers to its full enargy, the tool 
bounces back fron the rock surface, and again drains energy from the 
transducer. This process continues until a steady state condition is 
reached. The dashed lines represent the recovery curves of the trans- 
ducer if no further drain of energy from the tool occurs. 

If eq. (^-37) is expanded, one obtains 

I(t) = K{C - A + A[l - exp( t/S)]]3 

= K(C - A)2 + 2K(C - A)A[1 - exp(-t/S)] + KA2[1 exp(-t/S)]2 

(U-38) 

The first term represents the internal energy right after impact. The 
second and third terms represent the recovery. It is easy to see that, 
in the second term, the recovery is also dependent on C and K as well 
as the time factor S. The larger the value of C and K the faster the 
energy recovery. 

In the steady state operating condition, the energy recovered 
equals the energy drained from the transducer, assuming Tj. is the 
Impact interval. Therefore, 

•» li = l(Ti) = K[C - A exp(-t/S)]2 = K(C - A)2 + A (^-39) 
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where ZS is the energy that the tool acquired from the transducer; i.e., 

A= |m(vi - Vf) + EL (k-kO) 

vith Ejj being the energy loss due to impact.    Y1 and V2 are the velocities 
of the tool before and after impact, respectively.    If the transmission 
line tip and tool are made of hard material, not much plastic deforma- 
tion should occur.    Therefore, E^ is considered to be small compared to 
m{Vi - Vi)/2 and can be neglected.    Thus, 

A = m(vi - Vf )/2 ('4-111) 

L-ring this steady state condition, the internal energy is at 
a specific value before impact vrtiich implies that the tip vibration 
amplitude is also at a specific ralue. Now, there are several questions 
to be answered: What is the value of the interna] energy and tip vibra- 
tion amplitude? What are the value» of impact and rebound velocity of 
the tool against the transmission line tip a" id rock? These problems 
will be answered as the discussion precedes. 

In actual operation, the impact and rebound velocity of the 
tool is somewhat random and so is the internal energy and tip vibration 
amplitude; but, in the sense of averages, they are assumed to be deter- 
ministic in the above analysis. 

(B) Impact Coupling 

The general idea of internal energy during the steady state 
operating condition was discussed in the preceding section. Now the 
tool behavior during this condition will be studied. The tool-rock and 
tool-line phases of the impact coupling process have been studied exten- 
Osively. The present task is to combine them for the study of this coupling 

process. Feng [13] studied the impact coupling of a spherical ball 
between a static and a vibrating transmission line. The present analysis 
follows his method of approach. 

.. In [1], Part II, Chapter k,  the incident-rebound velocity rela- 
tionship of a tool impacting against rock was represented by a best-fit 
straight line while in Section k-2  of this chapter, the incident- 
rebound velocity relationship of a tool impacting against a vibrating 
transmission line was obtained. If these two relationships are plotted 
on the same figure with the notation of incident and rebound velocity 
as shown in the lower-right-hand comer of Fig. k-lk,  we obtain an 

' example figure as shown. In this case, a tool with l/2-inch equivalent 
length (me = ^")  and 10-inch radius of curvature of the tool-tip contact 
surface is used. The rebound-incident velocity ratio and tip amplitude 
Ci are assumed to be equal to 0.6 and 1.0, respectively. The steaclv 
state velocities happen to be at the point of intersection of these two 
relationships, i.e., the point WCV]. = 57.5 in./sec and Vo ~ 96.0 in./sec). 
To Illustrate this, let the tool start at a velocity V01 and impact 
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against the vibrating line (point Mx). The rebound velocity V2  from 
the line becanes the incident velocity V2 for tool-rock impact (point 
M^). With this rebound velocity Vi from rock, the tool impacts again 
against the transmission line tip (point M3). This process continues 
until the point of intersection W is reached. The same result will be 
obtained if we start at a lower velocity VÖi. The above is true as 
long as th'j tip vibration amplitude remains unchanged. If the amplitude 
c^ changes so does the point W representing the steady state velocities. 
Therefore, we can say that steady state velocities Vj. and Vo are func- 
tions of i±  since the tool-rock impact relation and the geometry of the 
tool are assumed to remain unchanged during operation. 

It is interesting to note that the situation may arise where the 
slope of the rebound-incident velocity relationship for tool-rock impact 
(slope = Vx/Va) is so small that no point of Intersection W can be ob- 
tained. This means that no steady state velocities can be reached and the 
problem then becomes more complicated. It is believed that, in some in- 
stances, the tool tip is in close contact with the rock while the trans- 
mission line hits the tool at the end; i.e., the tool-xonk and tool-line 
Impacts happen at more or less the same time. The SJope of the rebound- 
incident velocity relationship for tool-rock impact (Vi/Va) depends on the 
tip geometry of the tool and the properties of the rock. Usually harder 
rock yields higher values of Vx/Va. In the remainder of this analysis, 
only the case where steady state impact coupling occurred was considered. 
Therefore, our study was restricted to hard rock drilling in which inter- 
section point W exists for a specific tool geometry. 

Another interesting observation in previous analysis of impact 
coupling is that the steady state velocities do not change so long ar. 
the tip vibration amplitude remains unchanged; the static force Fs 
applied by the support structure of the transducer plays no direct role. 
It seems to have no effect on the impact process. Actually the static 
force affects the steady state velocities via affecting the value of 
steady state tip vibration amplitude c^.    This will be clear as the 
discussion of impact coupling continues. 

The discussion of static force is started by looking at the 
dynamics of a sonic transducer considered by Graff [19] (Fig. 1+-15). 
The rigid body motion is governed by 

M x = F s f(t) (IfJ+2) 

>jhere M is the mass of the transducer, f(t) is the time varying force 
at the tip of the transducer due to the impact of a sonic tool, and Fs 
is the static force applied by the support structure. Force f(t) is a 
combination of a sequence of impact forces, each impact force is high 
in magnitude but short in duration. It usually is leas than 50 usec. 
actually, the impact forces would be of various amplitudes and intervals, 
but thinking in terms of averages it is justifiable to consider equal 
amplitudes ejad spacings. The interval of impacts is quite long compared 
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with each impait duration in sonic processes. For example, if the fre- 
quency of impact is 1000 impacts/sec, the time interval is in the order 
of 1000 usec. 

Integrating eq. (k-k2)  gives 

M(x - äö) = Fst - y  f(t)dt (U-U3) 

Since it was assumed that each impact force is the same and the duration 
is short, it is Justifiable to represent the second term as follows 

I* f(t)dt = Im E H(t - tn) u n = 1 
{k-Uh) 

where N is the number of impacts between the time interval 0 and t and 
H is a Heaviside function. Now, rewriting eq. {k-k3) 

N 
M(ic - XQ) = Fst - Im   £   H(t - tn) 

n = l 
{h-k3) 
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This equation shows that the velocity of a sonic transducer has a saw- 
tooth form as shown in Fig. »+-16.    Thus, the constant force Fs causes 
a linear increase in velocity, but this is periodically offset by 
sudden velocity decreases due to the impact pulses.    If the proper 
balance ho1 as between the static force and the impulse Im and inpulse 
interval 1±i the increase in velocity is completely offset by the drop 
caused by impact, so that 

FsTi = Im 
{k-kS) 

This is a statement of impulse balance, so that the average net change 
in momentum of the transducer is zero. 

According to the definition of impulse, 

1^ = mCVi + V2) 

Therefore, from eq. (h-hS),  we have 

Ti "   Fs 

(U-U?) 

(1+-U8) 

The value of Ti consists of impact times and the traveling times of 
the tool between the transmission line tip and the rock surface  The 
frequency of impact coupling is just equal to the reciprocal of Ti; or. 

f = ^i = mlV, I  V2) 
ih~k9) 

>- 
H 
ü 
O 
_J 
LU 
> 

Velocity increase due to      Velocity decrease 
static force / due to impact 

TIME 

Fig. ^-16 Rigid body motion of a transducer acted upon by static 
force and impact 
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As stated previcrusly, steady state velocities, Vj. and Vo, are functions 
of tip vibration amplitude CJ.. Thus, the relationship between impact 
frequency and the tip vibration amplitude Ci are related to each other 
according to eq, {k-k9).    Generally, the increase or decrease of Vx  and 
V2 follows the trend of the value of ci.    When we increase the impact 
frequency, the amplitude drops, therefore reducing the internal stored 
energy of the transducer.  If the static force is kept constant during 
operation, it is easy to see from eq. (l+-lf8) that T< is a function 
ot Ci. :L 

(C) Power Transmission 

Now again consider the internal energy of the transducer, and 
rewrite eqs. (»+-35), (^-39), (^1) and {h-kl)  as follows: 

Internal energy just before impact is 

1±  = K(C - A)2 + A - K[C - A expC-Ti/s)]2       (U.50) 

The energy drain in each impact is 

A = m(vi - Vf)/2 (4.51) 

Tip vibration amplitude was given previously by c(t) = C - A exp(-t/S) 
while the interval of impulse is 

T, = i/f = 5^ vP) (lt_52) 
s 

Eliminating A is eqs.   (4-39) and (h-kl), and solving for A, we obtain 

A = C exp(Ti/S) ±   *J{C[1 - expt-Tj/s)]-) -  (m^K)^^ )[1 - exp(-Ti/s)] 
1 - exp(-Ti/S) "~*" 

(4-53) 

Substituting (4-53) is eq.   (4-35) and letting t = Ti, we get 

C(T  ) = 
C ^(Ti/S)  ±   VC^  -  (m/2K)(Vi-V-:)[l + expCTj/S) ]/[-! + exp^j/s)] 

1 1 + expdi/S) 
(4-54) 

To decide whether the positive or negative sign in the above equation 
should be chosen, consider a transducer with large K, i.e., a transducer 
whose energy storage capacity is very large. Then, by neglecting the 
second term in the radical sign, we have 

Ci = cdi) « GCexp^i/s) ± Ij/Eexpdi/S) + 1]     (4-55) 

If w^ choose the positive sign, we have 
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Ci = cCTi) = C 

This means that, for a transducer with large energy storage capacity, 
the steady state vibration amplitude before impact is close to the 
■unloaded, vibration amplitude C.    This is consistent with the statement 
made in Section (A) of this chapter that the larger the value of K the 
faster the energy recovery.    If we choose the negative sign, we have 

cCTi) -- CCexpCTi/S  - l)]/[exp(Ti/S) + l] 

This has no special physical meaning.    Therefore, we choose the positive 
sign in eq.   0-53) and (,h-5k), i.e., 

c± = cCTi) 

C expCVs) N/C
2
 -   (m/2K)(vi-Vf)[l + e^(Ti/S)]/[- 

1 + expCTi/S) 

■1 + expCVs)] 

(U.56) 

As discussed at the end of Section (B), the static force Fs is kept 
constant, and Vj., V2i  and T^ are functions of Ci [or c(Ti)]. Then, the 
right hand side of eq. (U-5b) is a function of ci only. Therefore, the 
value of ci can be solved numerically if not analytically, since no 
mathematical relationship between Vj., V2  and ci exists. 

The questions stated at the end of Section (A) become clear 
once the values c^, or c(Ti), is obtained. The values of Vj. and V3 can 
be found according to Section (B). The value of T^ can be obtained by 
using eq. (i+-52) with the values of Vx and V2 just found. The internal 
energy just before impact can also be evaluated according to eq. (U-36). 

With all the information obtained previously, the power trans- 
mission into rock can be calculated by considering the energy loss of 
tool to rock in each impact and the frequency of the sonic process. 
The energy absorbed per impact. A, is 

A = m(vi v!)/2 0-57) 

Therefore, the power transmission P is the product of A and f, i.e., 

P = Af 0-58) 

Substituting f of eq. (U-53) in the above equation, we have 

P = F (V2 - Vx )/2 0-59) 

With the value of ci known, the value of Va - Vx (or P) can be obtained. 
Figure k-17  shows the values of V2 - Vx for R = 10" and various values 
of equivalent length of the tool, TOQ.    The ratios of the rebound-incident 
velocity relationship in tool-rock impact used here are equal to 0.7 and 
0.6. 
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(D) Dr tiling Rate of a Sonic Transducer 

As we mentioned previously in discussing the specific energy 
(es) of rock, removal, the time required to remove a certain volume of 
rock is important in the discussion of economy of a drilling system. 
Therefore, drilling rate is the focusing point for any kind of rock 
drilling system. With the power transmission (?) and specific energy 
known for a sonic transducer system and rock, the drilling rate (R) 
can be found very easily as follows 

R = P/e£ (U-60) 

With all the studies on the sonic rock drilling being completed, an 
example problem using the information presented is given. This will 
aid in understanding the previous studies and also give a general idea 
of a practical situation in a sonic rock drilling process. 

(E) Numerical Example 

The information with regard to the transducer, static force 
applied, the tool and the rock are given as follows: 

TRANSDUCER: P-ll transducer with 1-inch diameter and 10-inch 
long transmission line 

Resonant frequency = 9750 Hz 
Applied terminal voltage = 1200 V 

STATIC FORCE: 100 lb. 

I 

.. 

.. 

I 
I 
I 
I 
I 

TOOL:        Dimensions - Type F tool 
Radius of curvature of the tool end = 10" 
Equivalent length mg = j" 

ROCK:       Granite 
V1/V2 = 0.5 

(Laboratory experiment shows that the value of rebound- 
incident ratio is between 0.5^ to 0.60 for Type F tool 
impacting against granite.    0.6 is used here for 
analysis.) 

Specific energy es - Fig. k-2 

The internal energy I according to eq.   (U-36) is I = Kc2 

where K is equal to 11.2 in.-lb/(mil)2 for P-ll transducer with a 10 in. 
transmission line [following eq.   (^-36)]. 

Angular frequency u) = 2nf = 6l,260 rad/sec. 

No-load amplitude C = 3.U/2 = 1.7 mils according to Fig.  1+-9. 
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Time factor S is dependent upon the total damping characteristics of the 
transducer.    Assuming that eq.   (U-31) still holds after the modeling of 
transducer tip vibration amplitude recovery is made, then S = SQ/w where 
Q can be obtained by using eq.  (U-25); i.e., Q = F/AF, and data from 
Fig.  4-10.    The value of Q is found to be equal to 76.5 for the terminal 
voltage of 1200 V and temperature of 75°F.    Therefore, 

S = 2 x 76.5/61,260 = 2.1+98 m sec. 

Tl = m{Vx + V2)/Fs = O.OÜ55027 V2 

Ti/S = O.OOIII+7536 Va 

and 

(m/2K)(vi - V!)[l+ expCTj/S)] ^-e tr2   1 + exp(Ti/S)   ,       N2 

Ti-^^fiT^n = 8'1885 x 10 - vi ^ + ^(TZ/S) to)2 

With the above information, the curves for the left-hand side and right- 
hand side of eq.   (1+-60) are cp = c(Ti), 

and 

C exp(Ti/S) +   ^C^ -  (m/2K)(V| - Vf)[l + exp(Ti/S)]/[-! + exp(Ti/s)]" 
exp(Ti/S) + 1 - 

and are plotted in Fig. 1+-18. The solution of eq. (56) is the inter- 
section of the above two curves, i. e., 

Ci = c(Ti) = 1.15 mils 

From Fig. 1+-17, 

Vx - V2 = 1+1+.1+ in./sec 
Vx = 66.6 in./sec 

V2 = 111.0 in./sec 
Ti = 0.50U m sec 

li = 11.2 x  (1.15)2 = 17.25 in.-lb 
A = i m(vi - Vf) = 1.121+ in.-lb 

A/li = 1.12I+/17.25 = 7-5^ 

Power transmission P is 

P = J Fs(V2 - Vx) = 2,220 in.-lb/sec = 11,100 ft-lb/min 

= 250.8 W 

D 

n 

no 
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Fig. ^-18 Solution of c^ (graphical method) 
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We do not have the specific energy chart for me = ^ in. but 
do have it for me = 1.08 in. (Fig. ^-2). To find the specific energy 
for ine - 0.5 in. and V2 = 111.0 in./sec, assume that equal incident 
energy of the tool would cause equal eraount of damage to the rock if 
t.p geometries are the same for tools of different mass (or me); then 
tht corresponding incident velocity V^ of the tool with nig can be found 
as follows 

i „   ,,2    1   » ,r»2 
f me Va = 2 me v2 

for 

me = ^ in. and me' = 1.08 in. 

Va' = 75-5 in./sec 

The value of es corresponding to V2 = 75.5 in./sec and me = 1.08 in. 
is 11,000 ft-lb/in.3 according to Fig. k-2. Therefore, the drilling 
rate In volume per minute is 

1^ = p/es = 11100/11000 = 1.01 in.
3/min 

and the drilling rate in in./min is 

RL = Rv/A = 1.0l/rt(|)
2 = 1.29 in./min 

Drilling rates and power transfer are also calculated for the 
case when the terminal voltage and static force applied to the trans- 
ducer are equal to 2000 V and 200 lb, respectively. An estimated value 
of Q is used (Q = 60) in this calculation since no experimental result 
is available for a transducer driven at 2000 V. The results are listed 
in the following table along with the previous example. 

Table k-1 -  Sonic Drilling of Granite 

1 
. ,   it 

u 

Drilling Drilling 
rate RL rate Rv 
in./min      in.3/min 

Power transfer 

W 

Tj., . A/Ii, 

ft-lb/min  m sec. oi 

V = 1200 V 
Fs = 100 lb. 

V = 2000 V 
Fs = 200 lb. 

1.29    1.01  250.8  11,100  0.50U  7.5^ 

8.58    6.75   819.O   36,250   0.1*16  7.60 
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The drilling rates of 1.29 and 8.58 in./min obtained are lower than 
conventional percussive drilling.    Bruce [20], in a study,  found the 
drilling rate with two special bits  (four-wing) and percussive drilling 
apparatus is within the range of 5 to kO in./min while the maximum 
piston energy consumed is in the range of U6,000 ft-lb/min to 162,000 
ft-lb/min.    Considering the power consumed and the drilling rate of a 
sonic transducer systemj it is easy to see that the system is in the 
low range of percussive drilling  systems. 
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5. TRANSDUCER ANALYSIS 

Although sonic and ultrasonic power transducers are widely used, 
the design of transducers is still more an art than a science. Con- 
cepts such as the half wavelength design and the full wavelength design 
are the dominant approaches in industry. Theoretical design based on 
more exact theories is lacking, especially for the high power applica- 
tions. Possibly this may be because of the complicated geometry of an 
actual transducer. Here, attempts will be made to apply the more "exact" 
theory of linear piezoelectricity to predict the resonant frequency of 
a transducer. However, the lack of an applicable short piezoelectric 
rod theory leaves the long rod and large plate theories as the only 
remaining a3 + ematives. Thus, these two models will be followed 
throughout the report. 

;; 

Additionally and, possibly mere importantly, is the objective of 
determining the causes for shifts in the resonant frequency of trans- 
ducers operating in different environments. In the Sonic Power Labora- 
tory of The Ohio State University, the resonant frequency of a transducer 
in operation has been observed to shift with different levels of pre- 
stress on the ceramics. A change of the transducer temperature or the 
driving voltage will als'"- produce a shift of tht1 resonant frequency. 
Although the shift i^ not necessarily drastic, it is sufficient to 
throw the transducer out of its designed operational bandwidth. This 
drastically reduces the workipg capability of the transducer. The usual 
vay to correct this problem f s to retune the transducer to its original 
designed frequency by changing transducer length, or to employ a variable 
frequency power supply to change the operation frequency. Experience 
reveals that the retuning process is tedious and time consuming. On 
the other hand, variable frequency power supplies are expensive. This 
situation presents a problem in attempting to use the less expensive, 
fixed frequency power supply approach to sonic processes. In order to 
overcome this difficulty, causes of the shifting must be understood; 
proper measures may then be taken to reduce the shifting or to make 
allowance in advance for the shifting and to offset it. In this chapter 
some experimental data will be given to show the extent of the shift 
with the prestress, temperature and voltage. Theoretical analysis of 
the shifting will also be given. 

I 
1 

In the following theoretical formulations for various resonators 
and transducers will be given and the frequency equations will be solved 
numerically. The shifts of resonant frequency will then be treated 
from two approaches:  (i) from the effects of the material property 
ohanges, and (ii) for the effect of prestress from determining an equiv- 
alent spring constant for the ceramics from measuring the resonant 
frequency of the simple resonator at different prestress levels. The 
theoretical results will be compared vrith the experimental values ir 
the final section. 
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5-1    SONIC RESONATORS 

cylinders      ?hTf ^ !^riC dlSCS 0r rings clamüed between metal 

alone, sinc^ the S"iL ^ +      * 0f the free Pi^oelectric elements tu.one, since the piezoelectncs used are generally thin. 

of ^Xle^^lfT*^^^^ JeS— the e^- 
solutions must be found Sfl +L^      T"7      St be formulated.    The general 
interfaces^ be Zlie^     ^^^ COnditJon3 at the e^S and the 

- included, ^pl^Tf^bÄ^^ 

there^s'no S^^LiSS^r^01, ^^ Wil1 be ^^^ assuming 
are..     /. w,611^^ f1881?^1011 ^ the materials.    The three resonators 

»1th the horn removed!     ihl^t      (    ,1Ch iS ^ 0SU p-7 tr»=*>o^ 
models wil^e 3tn'thl     tJ10taess P^*» «"2 the longitudinal rod 

(A)    The Symnetrical Simple Resonator 

+>»■«», =wwccii owü sTieex end rods connected bv a center hni+      A 

ä^h ^S ^u'Tlead ^^ &\r Center 0f L --toft; serve 
this resoSto?   ^ '    FlgUre 5-1 ShOWS the schematic diagram of 

allied to^h^Sl6 cylinl^' T^T*^ ^ ^ ^ be 

and,  strictly sneaktr,^    ^      -"^      v      a,n;LC ringS are short ^d h°U-™ 
nlater   Si    sPeaf-ngJ  can neither be classified as rods nor infinite 
tJS tie rod or^he^rr 0J the ^^ of the models ?or SheT 

techniques  [if^   The resnlt^t^ =^»0 obtained by straightforward 

The var'i^s'sibol^ave^Se^rTslSf ^^ iE ^ ^ »=•  5-2- 

Li 

«Numbers in brackets refer to references at the end of this chapter. 
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Fig.  5-1   The symmetrical simple resonator 
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7(3>    n^ (3) 

Fig. 5-2 Equivalent circuit for the symmetrical simple 
resonator -- thickness plate mod,1 
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Zi^1) = JaiZo^) tan i r±£± 

Za^1) = - jaiZoC1)^!!! r±£i 

(5-1) 

(5-2) 

wbere i = 1, 2, 3 for elements 1, 2, 3, respectively (referring to 
Fig. 5-1) and 

20(
1) = 20(

2) = (pßYjj)7'  (metal elements 1 and 2) 

2o(3' = (PcCaB)'^  (ceramic plates) 

ii = Fa = u/cb,  cb = iYB/psy' 

r3 = u/Cc^/pc)'/' (5_3) 

The other quantities are 

ZLg = ßaliJa/öwaa 

N = hgaaa/ßal^a = h33/jtoZL| (5-If) 

The equivalent circuit can be simplified to that of Fig. 5-3 (a), which, 
in turn, is equivalent to Fig. 5-3 (b). 

-Z^   Z/N2 

(a) (b) 

. I 

. , 

J 

i 

Fig.  5-3    Simplified equivalent circuits 
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The impedance Zt in Fig. 5-3(a)  can be vritten as 

zt = z^1) + zj2) + z2(
2) + Zx^) + z2(3) 

+ z1(^z2(^/(z1(^) + z2(0) 

= da1z0(
1) tan r^!  - öa2z0(

2)/tan r2^2 - ja3Z0(
3)/tan V3i3 

-■ 

H 

I 
1 

(5-5) 

Thus, the terminal impedance Z is as follows: 

Z-1 = I/V =   (Z1^)-1 +   (-ZLC + Zt/N2)"1 

Z = ZLC(1 - N^^C/Zt) (5-6) 

The resonant frequency is given by Z = 0, or, 

Zt  =   N2ZLC   =   -   Jh332a3/u)^3ß33 (5-7) 

Substituting the definitions of Zt, N and ZL|, the follovfing frequency 
equation is obtained; 

a1z0(
1) tan Vx^ - a2z0(

2)/tan V^2 - a3Z0(
3)/tan Tsea = -hssß-sh&zßss 

(5-8) 

Since z0(
3) and ZQC

1
) are comparable, ?xlx » rs&2, Txh » r3^3, thus 

when c^i/cb -» it/2, the value of the first term in eq.   (5-8) is large 
Oand increasing, while the value of the third term is also large but 

decreasing.    This implies that the lowest frequency solution to eq. 
(5-8) will occur near   o^/cfc = it/2.    Therefore,  for the lowest resonant 
frequency, the approximation tan r2£2 t r2^2, tan ^3 = r3Z3> can be 
made and eq.   (5-8) becomes 

tan Vi&i = [(asuxAMa) + a3^i/ai£3)(c33 - e33b33)/YsVri^i 
(5-9) 

One can show that C3S - €3^3! = C3I.    Thus eq.   (5-9) is simplified to 

tan rxh =  [(a^i/ai^) +  (a3^1/a1i3)(c3i/Ys)l/r1i1        (5-10) 

To understand the physical meaning of this result, eq.   (5-10) will be 
compared to the frequency equation obtained by replacing the ceramic 
rings by an Isotropie elastic rod with Young's modulus equal to Yc. 
It Is easy to show that the frequency equation for this system is 

tan r^x = [(a2^1/a^2) + (aa^/a^KYcAs)]/^ (5-11) 
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Ccoiparing eq. (5-10) to eq. (5-11) one can see that the two ft-equency 
equations are identical if one substitutes Yc in eq. (5-10) for cj 
Thus the following conclusion is made: for the thickness plate model, 
the resonant frequency of a simple resonator is given by the pure 
elastic system in which the ceramic has an equivalent Young's modulus 
equal to C33. Stated differently, the resonant frequency is the natural 
rrequency of the system with the piezoelectric rings short circuited. 

Equation (5-10) can be solved numerically. For the OSU simple 
resonator, the following numerical data were used: 

Table 5-1 - Numerical Data for the OSU Simple Resonator 

For steel elements; 

ax = 2.07^ in.2 

£x = 5-0 in. 
Y8 = 20.02 x 1010 N/m2 

= 29.0 x 10s psi 

For the PZT-4 rings; 

&3 = I.325 in.2 

C33 = 11.5 x 1010 N/m2 

= 16.7 x 10^ psi 

Y! = 6.^5 x 1010 N/m2 

= 9.35 x 106 psi 

Bi2 = O.I96I1 in.2 

£2 = 0.265 in. 
Cb = 5050 m/sec 

= 19.88 x 104 in./sec 

I3 = 0.25 in. 

C33 = 15.9 x IO10 N/m2 

= 23.1 x 10s psi 

YS = 12.65 x IO10 N/m2 

= 18.2 x Itf3 psi 

After substitution of the above data into eq.   (5-10), the frequencv 
equation becomes 

tan(wi1/cb) = 9.197/(w^i/cb) (5-12) 

The solution is u^/ct = l.laS, thus  fPlate = 0.226 ^/h = 898O Hz. 
While the resonant state is characterized by the zeros of the reactance, 
the antiresonant state is characterized by the zeros of susceptance. 
For this problem, the antiresonant frequency is given by Z ->«, or 

the're'ult^111 ^^ ^ approximation tai1 r2^2 = r2£2, tan r3e3 ± r3£3, 

tanTxij. =  [(a^/a^a) + (a3^/a1£3)(c3i/Ys)]/r1^1        (5-13) 
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Riyslcally, from this result it is equivalent to ray that the ceramic 
has an equivalent Young's modulus equal to C35. Hence, the antiresonant 
frequency is the natural frequency of the system with the ceramic open 
circuited. Substitution of the numerical data yields 

tan^/cb) = la.Ol/Mj./cb) 

Thus fPlate = 0.2309 c^llx =  9180 Hz 

(5-lU) 

The longitudinal rod model--For the longitudinal rod model, the 
only modification to be made is in the part of the equivalent circuit 
representing the ceramic. The equivalent circuit for a longitudinally 
vibrating ceramic for the rod is incorporated and the new equivalent 
circuit of this model is shown in Fig. 5-^. Some of the symbols appear- 
ing in the figure were given previously in eqs. (5-l)> (5-2) and (5-3)« 
Additional definitions are 

z0(
3) = (pj.Ya11)'''1  for the ceramic rod 

Ts = u/c^  >  ^bc = (Y31)/Pc),/J 

ZLg = Sal^a/jcoaaealsal 

N = gaa/jusaiz1^ = a.3ö.33/l.3&Ji (5-15) 

I 
I 
I 
I 

I 
I 

Flg. 5-1* Equivalent circuit for the symmetrical simple 
resonator-longitudinal rod model 
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Again, the equivalent circuit is simplified.    The resulting circuit is 
exactly the same as that of Fig.  5-3 for the plate model, except that 
the symbols have different definitions.    After manipulation, the 
impedance is found to be 

Z = Z^C  (! . N^/Zt) (5-16) 

where 

Zt = Ja1z0(
1) tan r^ - ja2z0(

?)/tan r1ß2 - ja3Z0(
3)/tan r3£3 

(5-17) 

For the resonant frequency, Z = 0 yields 

tan r^i = a2z0(
2)/a1z0(

1) tan r^2 + a.3z0(
3)/a^oi1) tan r3^3 

- (a3/a1^3)(S3l - S3S)/s3is3Sz0(
1) (5.18) 

With the same argument given previously, the approximations, 
tan r^s ^ Vxls, tan Fs^ = Tsts, can be made.    Thus, eq.  i^-ld) 
becomes »    •*    \-       / 

tan w^/q, = [(aa^/axiJa) + {&3£1/a.1£3){Y3
E/Yl>)]/U1/oh) (5-19) 

Equation (5-19) can be regarded as representing a mechanical system 
with a short circuit across the faces of the ceramic. Substituting 
the numerical data given in Table 5-1, eq.  (5-19) reduces to 

tanO^i/cb) = 5.975/(^1/cb) (5-20) 

This has a solution, (cj^/cb) = 1.3488, or f^od = 85^0 Hz. The anti- 
resonant frequency is given by Zt = 0, which yields 

tan wüi/cb = [(a2^/M2) + (a3£1/a1^3)(Y3
D/Ys)]/(^i/cb) 

(5-21) 

Equation (5-21) can be regarded as representing a mechanical system 
With an open circuit across the faces of the ceramic. Using the data 
of Table 5-1, eq. (5-21) becomes 

tan uih/ch =  9.937(^i/cb) (5-22) 

A solution to this equation is IO^I/CH = 1.U281, or frod = 0 227^ 
CbAi = 9038 Hz. D a    •  fJ 

Ccmparing fPlate^ frod} fglate^ frod to one another> one can see 
that the resonant frequencies of the above two models differ considerably, 
while the antiresonant frequencies do not differ very much. 
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The spring model—The third model being fonmilated is the "spring 
model". For this model, the crystals are approximated by a linear 
spring with its spring constant remaining to be determined. A simple 
resonance test is required to assign the equivalent spring constant. 
It is hoped that this constant can be applied to other resonators of 
similar configuration. In this way, the complicating factors which 
result in discrepancies between experimental resonant frequencies and 
the one-dimensional theoretical results can be disposed of simply. 
Furthermore, the complicated piezoelectric relations can be eliminated. 
Figure 5-5(a) shows this model schematically. Taking advantage of the 
symmetry property of this problem, the problem is simplified as shown 
in Fig. 5-5(b). The equations of motion are similar to those used 
earlier. The general solutions are 

UiUijt) = (Ax cos uxx/cb + Bj. sin ux1/ch)  e^* 

U2(x2,t) = (A2 cos wx2/cb + B2 sin wxa/ct,) eiuit 

The boundary conditions are 

cfcx/cfccxl     = 0 
I Xx = 0 

U2(0,t)   =   0 

«iUi,t) = - u2U2,t) 

(5-23) 

+ 2K U2(Ü2,t)      (5-24) 
X2=^2 

Substituting eq.   (5-23) into eq.   (5-21+) yields 

B]. = A2 = 0 

Ax  cos uii/ct, =  - B2 sin tj^s/cb " A1a1Ys(tj/cb) sin u^/cb 

= Bs^Ygtui/ct,) cos uZs/c-fr + 2K B2 sin uts/ch 
I 

The frequency equation is obtained from eq.   (5-25) for nontrivial 
solutions of A1 and Bp.    It is 

tan w^/cb = (aa/aj/tan w^s/cfa + 2K/(a1tJYs/cb) 

Since ^ » i2, tan ulz/c^ ± ufe/cb so that 

tan u^/cb = [aaii/a^s + 2K/(Ysa1/£1)]/(u)£1/cb) (5-2?) 

Substituting the numerical data of Table 5-1 into the above equation, 
the solution for the lowest natural frequency can be plotted against 

(5-25) 

(5-26) 
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(a) 

l-*X 
(b) 

Ps'^s'0^: 

X2-—i 
I    i 

Fig.   5-5    The spring model for the symmetrical simple 
resonator 

the unknown K value as shown in Fig.  5-6.    Specifically, if one uses 
the strength of material K values, i.e., if 2K = Y^a /&    = 5.00 x 107 

lb/in., eq.   (5-2?) becomes 

tan to^/cb = 6.01/iuZx/eb) (5-28) 

The solution is w^/ct, = 1.35-    Thus the natural frequency is 
fE = 85I+5 Hz.    If the value 2K = Y3Dac/ec = 9.70 x 107 lb/in. is used, 
one obtains 

tan ufi/cb = 9-95/^1/^) (5-29) 

The solution is u^/ct, :-- I.U283, thus the natural frequency is 
is fD = 90UO Hz.    The above two natural frequencies are indicated in 
Fig.  5-6.    Theoretically,  comparing eqs.   (5-19) and (5-21) to eq.   (5-27), 
the frequencies obtained above should be exactly the same as those for 
the longitudinal rod model.    However, due to the round-off errors, the 
values are slightly different. 

CD)    The Asymmetric Simple Resonator 

In Fig. 5-7, a schematic diagram of an asymmetric simple 
resonator is  shown.     In this figure, Part 1 is considered to be a solid 
cylinder which consists of the end nut and a portion of the center bolt 
screwed together; Part 2 is a hollow cylindrical steel sleeve.    Part 3 

i 
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Fig, 5-6 The natural frequency versus the spring constant K 
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Fig. 5-7 The asymmetric simple resonator 

represents the remaining center bolt while Part k  is the solid steel 
cylinder on the other side of the ceramic rings, and Parts 5 and 6 are 
the two ceramic rings. 

The one-dimensional wave model--To analyze this problem, one- 
dimensional wave equations will again be employed to model each part 
of the resonator. Boundary conditions at the ends and interfaces must 
be incorporated to solve for the various constants as well as the fre- 
quency equation. The equivalent circuits obtained previously can be 
used to relate the forces and the velocities for the boundary conditions, 
For this problem, this will yield 26 equations for 26 unknown terminal 
velocities, forces and currents. Numerical calculation of the resonant 
frequency is possible by looking for the frequency for which the deter- 
minant of coefficients of the above unknowns vanishes. This could be 
determined by use of an electronic computer but would consume consid- 
erable computational time. However, by using the following scheme 
without resorting to the equivalent circuit method, the procedure can 
be simplified. Thus, from this point on, the equivalent circuit will 
not be used again. The general solutions presented previously will be 
substituted directly into the boundary conditions and the frequency 
equation, which is obtained from the vanishing determinant of the 
resulting coefficient matrix, will be solved numerically on the computer. 

The general solutions for the steel members 1 through k  are 
expressed as follows: 

. 

; 
; 

^Ui»*) =  (Ai cos Txi + % sin Txi) e jut (5-30) 

where r = u/cfc, Cb =  (Yg/ps)7',  and i = 1, 2, 3, k for members 1, 2, 3, 
k, respectively.    The velocities and forces can be derived as follows: 
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ViUi,t) = Ju)(A1 cos rx± + Bi sin Vx^ edut 

fi(xi,t) = Ysair(-Ai sin Txi + Bi cos Fxi) eJu,t 

where again, i = 1, 2, 3, It.    For the ceramics 

UpCxpjt) = (Ap cos rcxp + Bp sin rcxp) e^* 

VpCxp,!) = j(Ap cos rcXp + Bp sin rcxp) eJwt 

fp(xp,t) = ac[uzoc(-Ap sin rcxp + Bp cos rcXp) ~ ^l|] e^* 

Va = - haaCCcos rclv - l)Ap + Bp sin rcXp] + ZLg I« 

where p = 5 and 6 for ceramic rings 5 and 6, respectively, and 

rc = u/cbc 

Ucal/pc)''' for thickness plate model 
Cbc " j(Y3I)/pc)'/l for longitudinal rod model 

ZLC „ ißaa^c/J^ac for thickness plate model 
E      | S33ic/j(l)aC€33S3^ for longitudinal rod model 

r _ jh33/jwac for thickness plate model 
(g33/jwacE33 for longitudinal rod model 

_      _ ) (pcCss)7' for thickness plate model 
((pcY3 )'/j for longitudinal rod model 

The boundary conditions are 

1) at free end Xx = 0 
fi(0,t) = 0 

2) at interface Xj. = ^i, Xa = 0 and X3 = 0 
UiUijt) = u2(0,t) 

(5-31) 

(5-32) 

U1(£1,t)   =  U3(0,t) 
*iUx,t) = f2(o,t) + f3(0,t) 

3)    at interface X2 - £2, X5 = 0 
^sUsit) = u5(0,t) 
fsUs,t) = f5(0,t) 

k)    at interface X5 = ic, xe = £c 
Us(^c>t) = -u6(^c,t) 
*sUc>t) = feCiot) 
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(5-35) 

(5-36) 

(5-37) 
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5) the current versus voltage relations 
V = / E5 • dx5 
V = / Ee • axe 

6) at end X4 = 0 
f4(0,t) = 0 

7) at interface x* = £4, X3 = i3i  and Xe = 0 
U3(^3,t) = - U4(^4,t) 
U6(0,t) = - U4U4?t) 
f3(i3,t) + f6(0,t) =   U{U,t) 

(5-38) 

(5-39) 

(5-UO) 

In sunsüary, there are 1^ equations for the ll+ tmknown A's, B's, and I's 
res'ilting from substituting the general solutions into the above 
boundary conditions. This is quite a simplification compared to the 
equivalent circuit approach which has 26 equations for 26 unknowns. 
The reason for this simplification can easily be explained: from 
minimum energy principle, it can be proved that one cannot specify 
force and velocity at the same end simultaneously. Thus, aU. the end 
forces and velocities appeared in the equivalent circuit approach 
cannot be mutually independent. Therefore there must be one equation 
relating the end force and velocity at each end. For our problem, 
there are 6 members and thus 12 ends. This is why there are 12 ecr Lations 
and 12 unknowns. In the following, the general solutions will be sub- 
stituted into the boundary conditions and then the relations will be 
simplified to give a frequency equation of a 7 x 7 determinant. 

The substitutions yield, 

Bi. = 0 

A! cos r^i = k2 

A1  cos r^! = A3 

-a!Ai sin ?£% - ^^ + B.3B3 

k2  cos Viz  + B2 sin Vl,2 =  A5 

a2UZ0(-A2 sin ri2  + Bo cos r^) = as(uz0cB5 - (;i§) 

A5COS rctc  + B5 sin rcüc = -(A6 cos rc£c  + B6 sin rc^c) 

(-A5 sin rc£c +  B5 cos rctc + A6 sin rc£c - B6 cos rcüc) 

- (?/wzoc)(l5 - Is) = 0 

V0 = - h33[(cos rcüc - 1)AS + B5 sin rc£c] + Z
Lg li 

V0 = - h33[(cos rc^c - 1)A6 + B6 sin rc£c] + Z
Lg Ig   (5-1+1) 

1 J 

.! 

. 1 
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B4 = 0 

A3 cos rZa + B3 sin ri3 = - A4 cos r^4 

A6 - A4 cos rii 

a3WZ0(-A3 sin 1^3 + B3 cos r.^) + a^i^ZocBe -  ^li) 
a a4U)Z0(-A4 sin r^4) 

fhe simplified relations axe 

B,. = 0, B4 = 0, Aa = A3 = Ai cos F^ 

A4 = - (Ai cos r^i cos ri3 + B3 sin r.03)/cos rz* 

A5 = Ai cos T^i cos r^a + B2 sin rz2 

A6 = - (Ai cos Tii cos r^3 + B3 sin rB3) 

(a 7x7 matrix) 

Ai Ci 

Ba C2 
B3 C3 

B5 = C4 

Be c5 
Is CO 

Is c7 
. . 

(5-Ul) 

(5-U2) 

(5-^3) 

vhere D^j = 0 and C^ = 0 except for 

Du = sin r^i,  D12 = aa/au  D13 = a3/a1 

D21 = (as/aj.) cos Vtx  ain Ttzt     ^22 = - (aa/a!) cos rz2 

VSA  = (ac/ai)(zoc/zo)}  B25 = - (ac/ai)(CMol 

D31 = cos VZi  cos r^o cos rczc -  cos Tii cos ri3  cos rc£c 
D32 = sin TZs  cos TcXc»  D33 = - sin r^3 cos rc£c 
D34 = sin rc£c,     D35 = sin rc£c 

D41 = cos T^i cos VZs  sin rc^c + cos Fix  cos rz3  sin rc/c 
D42 = sin VZs  sin rcic,  D43 = sin r^3 sin r^c 
D44 = - cos rcZCi     D45 = cos Tc^c»  D46 = - ?/uzoc 
D47 = C,/uzoc 

D5i = - (a3/a1) cos Fli sin rts  - (a4/a1) tan TZ*  cos r^i cos rz3 
Bs3 = (aa/ai) cos rz3 -  (a4/a1) tan VZ*  sin r£3 
D55 = (ac/ai)(2oc/zo)J  D57 = (ac/aiM^/uzo) 
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Dei = (cos rc^c - 1) cos r^i cos r^2 
D62 = (cos rc^c - 1) sin r£p 
D64 = sin rcic,      D65 = - ZLC/h33 

DT!   =   (1   -   COS  TQZC)   
COS  r^l   C0S  r^3 

D73 =  (1 - cos rc£c) sin r^3 
D75 = sin rc£c,      D77 = - ZL|/h33 

C6  =   -   Va/h33, C7   -   -   ^33 

The frequency equation is given by 

det[Pij] = 0 (5-M) 

The spring model—As for the symmetric simple resonator, the spring 
model for the asymmetric simple resonator can be obtained by simply 
modeling the ceramics as an elastic spring (Fig. 5-8). The equations 
of motion and their corresponding general solutions are the same as 
previously given in (5-30) to (5-31) for the steel members. Boundary 
conditions 1, 2 and 6 are the same, while at steel-ceramic interfaces 
the original set of equations are replaced by the new set of equations 
involving the spring constant. These new equations are: 

1) at X2 = i2> .    .. 
f2U2,t) + K[u2Ui,t) + vkU^t)] = 0 

2) at X4 = &4i  and X3 = is» 
vkU^t) = - UaUajt) ,  ^, 
f4(ü4,t) = faUajt) - K[u2(^2,t) + U4(i4,t)] 

(5-U5) 

(5-^6) 

Copying down the rest of the valid boundary equations and substituting 
the general solutions into the above three boundary conditions, one 
obtains the following relations after some manipulation: 

Bj. = 0, B4 = 0 

A2 = A3 = Ax cos Fix 

A4 = (-Ax cos T^x cos r^a - B3 sin r.03)/cos Ft* 

'Dxi  DX2 D13 Ax 0 

Dai   D22  D23 A2 = 0 

Dax D32 Daa, [As. _0 

(5-^7) 

(5-^8) 

where 

Du = sin r^x»  Dx2 = aa/ax,  Dxa = a3/ai 

D2i = (a2/ax) cos Fix sin Ttz + cos I^i (cos r^a - cos Vis) 

D 

Oil 
. i 

:1 
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Fig. 5-8 The spring model for the asymmetric 
simple resonator 

:; 

D22 = -(as/ai) cos Viz - (^ sin Fia 
D23 = 5x sin r^a 

D31 = - (aa/ax) cos Fix sin ri3 - (a-./sj.) cos Fix sin r^a 
-  (a4/a1)  cos fix cos T^a sin T^/cos TZ* 

D32 =  (aa/ax) cos Tia 
D33 = (as/ai) cos ri3 -  (a^aj.) sin Tia sin r£4/cos r^4 

In the above, the symbol ^x = K c^/Ys^ui has been used.    The frequency 
equation is given by 

det[Dij] = 0 (5-^9) 

Again, this can be solved numerically. However, numerical solutions 
were not actually obtained in this study. 

(C) The P-7 Resonator 

The P-7 resonator is essentially the OSU P-7 transducer with- 
out the stepped horn. It differs from the asymmetric simple resonator 
only in its dimensions and its cross sections. It does not have a 
uniform cross-sectional area along its length. Also, it has a hexagonal 
cylindrical nut and steel sleeve. Figure 5-9 shows the schematic 
diagram of the P-7 resonator. The set of equations are identical to 
those of Section (B) except that the geometrical dimensions axe different. 
The following data are used for the P-7 resonator. 
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Fig.  5-9   The P-7 resonator 
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Table 5-2 - D^nensions for the P-7 Resonator 

ti = 1.25 in. 
^2 = 2,75 in. 
^3 = 3.35 in. 
^4 = O.97 in. 

£5 = £e = ec = 0.25 in. 

ai = 1.9^7 in.2 

a3 = 1.505 in.2 

aa = 0.4^2 in.2 

a4 =-■ 2.U05 in.2 

as = a6 = ac = 1.325 in.2 

t^ti^r^ 5^9 h ^b r S T56^ COeffi^-ts the frequency 
Puter.    The^owest resonant frlaTerT^^ 0n m ^ectronL coL 
tudinal rod model of the cer^T     y 1S fr = 15-33 kHz for the ^ngi- 

-terl^fe^-fr? rio'w^ ^ SJatif St-^h of 
in eq.   (5.1,9), the'lowest reson^t £t'  ^ K    = ^^ X ^ lb/in. 
f| = 16.4 kHz, f? = 17 6 i^r    ^    fre(luenc"S were found to be 
the one for the iongitudiS'rod Sl^ifl''0" tV0 ^e^cieS with 
model gives a frequency which is ?oo high!        ^^ that the Spri^ 

5-2    THE P-7 TRANSDUCER 

stepped^hL'.^^^.^^Vs^^0' ^ a P-7 resonat- PI- a 
Although, as a flm appioJlti^ Z ^ ^^ 0f the P-7 transfer, 
mined by using the "haJ?-wa^gth" anuro«^^'..^6^611^ C™ be dete- vexength    approach, the more exact solution 
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Fig.   5-10    The P-7 transducer 
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should be calculated from the more exact model.    Especially, when the 
transfer function between the electrical terminals and the tip of the 
transmission line is to be decided, the piezoelectric equations must 
be taken into consideration.    In this section, the method used in 
treating the P-7 resonator (Section 5-1 (C)) will be extended to 
include the stepped horn. 

The general solutions for the steel members 1, 2, 3, U, and 7 are 
given by eqs.  (5-30) and (5-31), while for the ceramic rings 5, 6, 
eq.   (5-30) applies,    in addition to the boundary conditions given by 
eqs.  (5-33) to (5-38), the following equations arise from the attach- 
ment of .the stepped horn 7:    They are: 

1)    at the free end x7 = 0, f7(0,t) = 0, so that 
B7 = 0 

2)    at interface x7 = i7, and X4 
fyUrjt) = f4(0,t); thus 

A7 cos r£7 = A4 
-a7A7 sin r£r = a.^ 

=  0, u7U7,t) = U4(0,t.) and 

3) at interface X4 = £4, X3 = z3,  and x6 = 0, v^iu.t) =  u^O.t) = 
- UaUajt), and UiUyt) =  f6(0,t) + f3(^3,t)j thus, 
A4 cos ri4 + B4 sin TZA: = A6 
a4ü)Z0(- A4 sin r^4 + B4 cos ri4) = ac(cjZoCB6 - (,1g) 

+ a3fjz0(- A3 sin r^s + B3 cos r^s)- 
A4 cos TZ* +  B4 sin VU = - (A3 cos T^ + .B3 sin r£3) 

Thus, there are 16 equations for 16 unknowns. Again, the above equations 
can be simplified and the frequency determinant obtained and solved 
numerically on an electronic computer. Substituting the numerical data 
previously given, the lowest resonant frequency versus a 5/8 in. diameter 
horn with a length of approximately 5 in. is obtained and shown in 
Fig. 5-11 as the "1-D Rod Model." 
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The spring model—Figure 5-12 shows the spring model for the P-7 
transducer. It is obtained from Fig. 5-10 by modeling the ceramic 
rings as an elastic spring with spring constant K. The formulation of 
the equations of motion are similar to the previous cases and will not 
be repeated here. After substituting the general solutions into the 
boundary conditions the frequency equation is found to be 

det[Dij] = 0 

where Dij is a 3 x 3 matrix with 

Du = sinr^L,     Di2 = aa/aj.,      V13 = aa/aj. 

D21 = (aa/ax) cos Fix sin r22 + (^ cos Fix cos r£3 

,     .    . -  ^1 cos Tii cos r£,2 
D22 = -  (a^ai) cos r£2 ~ ^ sin ri2 
D23 = ix sin rt3 

D31 =  (aVai)  [sin ?£* +  i&j/a.^) tan rZ7 cos TZ*] cos V&x 
cos rz3/ [cos r^4 - (a7/a4) tan r£7 sin rz*] 
+  (aa/ai) cos r^   sin r£3 - (^ cos 1^  (cos r£3 - cos Ti,z) 

D32 - fji sin T^a 
D33 = (a^e „ax) [sin TZ*  + (ay/aO tan TZ7  cos T^^sin TZ3/ 

[cos ri4 - (a7/a4) tan VZ-?  sin F^*] - (aa/aj,) cos Tis 
- ^ sin TZ3 

The resonant frequency (lowest) for K = KE = 2.5 x 107 lb/in. was found 
numerically for several lengths in the vicinity cf 5 in. as shown in 
Fig. 5-11 as the "Spring Model." For a more direct comparison, the 
results of the longitudinal rod model and the fixed-free horn are also 
shown in the same figure.  It is seen that the slopes of the one- 
dimensional model and the spring model are the same, while that of the 
fixed-free horn is somewhat steeper. 

K 
2 

4 1 3 
. 

7 

■vw 

Fig. 5-12 The spring model for the P-7 transducer 
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In conclusion, it may be worthwhile to differentiate the physical 
meaning of the resonant frequency from that of the antiresonant frequency. 
At the resonant frequency the terminal current is infinite for a finite 
drivinc voltage, since the terminal impedance is zero. Consequently, 
the particle velocity is infinite except at the velocity nodal points. 
Contrarily, the particle velocity will be zero at the antiresonant 
frequency, since the terminal impedance is infinite and the terminal 
current is thus zero for a finite driving voltage. However, it must be 
noted that the pure mechanical systems (neglecting the piezoelectric 
effects completely) do have a natural frequency at the antiresonant 
frequency. This is evident from the vanishings of the pure mechanical 
impedances for the equivalent circuit systems. Therefore, in order to 
drive the system into its resonant state at the antiresonant frequency, 
the mechanical forcing function (force or displacement) must be provided 
at one of the mechanical terminals. An electrical driving voltage will 
not be able to drive the system into its resonant state at the anti- 
resonant frequency. Therefore, in order to obtain maximum energy 
transduc -ion, the system must be driven at its resonant frequency. 

I 
: 

:: 

5-3 STATIC BIAS MD TEMPERATURE EFFECTS ON 
TRANSDUCER RESONANT FREQUENCIES 

As mentioned earlier, ferroelectrics are highly nonlinear in 
material properties. Their properties are also subject to change with 
passage of time, a phenomenon called the aging effect. Experiments 
have shown that a major disturbance such as large temperature change, 
or high stress level, or intense electric field, will not only change 
the properties themselves, but also trigger a new cycle of aging. Thus 
a complete understanding said precise prediction of the behavior of a 
ferroelectric material is quite difficult. However, thanks to various 
researchers, sufficient useful information has been accumulated on 
PZT-U to make possible a better understanding of its properties. 

In the OSU Sonic Power Laboratory, the resonant frequency of a 
transducer has been observed to shift with different prestress bias 
levels.  It also shifts with the change of temperature of the trans- 
ducer. Moreover, a higher driving voltage will always decrease the 
resonant frequency. These effects greatly hamper efforts to operate 
the transducer at a fixed frequency. Because the shift of resonant 
frequency of a transducer shifts it away from the fixed supply fre- 
quency, the transducer is detuned; i.e., it has an amplitude of vibra- 
tion much less than the designed amplitude at the power supply fre- 
quency. Figure 5-13 illustrates the detuning effect with the shift of 
resonant frequency. The detuned transducer is seen to have a very 
small response at the power supply frequency, although the shift of 
frequency is small compared to the original resonant frequency. When 
a transducer is detuned, one way to correct this problem is to tune it 
back to its original resonant frequency by changing the length of the 
horn, since the resonant frequency of a transducer is very sensitive to 
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Fig.  5-13    The detuning effect on a transducer 
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the horn length (see Fig. 5-11). However, this process of correction 
is rather tedious. 

The above problem prompts this investigation. In the following, 
the shift of resonant frequency of a transducer due to the prestress 
bias level, the temperature change and the voltage supply amplitude 
will be investigated. The aging effect will be compared to the experi- 
mental ones, where they are available. 

Another aspect of the work will be an experimental-theoretical 
approach utilizing the spring models previously proposed. This approach 
is used because the ceramic rings are hard to model more precisely since 
they are neither a plate nor a rod. Although the more exact two- 
dimensional model can be fomulated, the solution is difficult to obtain 
and will not be used in this study. It is envisioned that the spring 
model which has a spring constant K, that may be found from experiments 
with the simple resonator, will enable one to determine the shift of 
resonant frequencies in the other resonators and transducers using the 
same ceramics. 

(A) Summary of Prestress, Temperature and 
Voltage on PZT-U Properties 

It has been suggested that the shifts of the material proper- 
ties of piezoelectrics are dictated by the intrinsic nonlinear!ties of 
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quotation frc^ SlSS* Jaeger6[3 J^1^' ^ ^ ^^^ 

1«^!?^ r1^ aXiS ?f a ?erovskite ferroelectric may be oriented 

eel!      The^ofar^-^1'.  0rh0mbic) 0f the Pseudo^ic perovskite^ 
?n"Thp ! r P Erection is  elongated with respect to its length 

aeleSr^«?" 5      .        PlaCe*    Thls Win here be te™ed 
of orW^S     T^ reorientati°n, since this is the main type 

?LrIen?a?ion of JM T™*^* ^ electric ^e, and siSe 
™!^ ^ ? f thlS type takes Place ^th no nonpiezoele-tric 
mechanical strain.    The other type of domain reorientation is 

iaXVd^^'  Si?Ce " illVOlVeS ^nsional chLle"   This 
degrees in Sorth^ H ^^^^ P^ovskite, by 120 - 60 or 90 
aegrees in an orthorhombic perovskite, and by 109 - 71 decrees 
in a rhcmbohedral perovskite " aegrees 

under mataUiBed pl^ strH,'   S' ! aglr'g 0f its Pe™"tivlty 
the effectsrf 1 J.^i     s*"ss-./^Eer and Berlinconrt [8] measuned 

^Un-^Tf^L^dlt^r410?-   ^ «^-drc^enoe, 
also ffavp   ^ t»  /    f! f ^cussion on this subject.    Nishi   [101 

SssSr^Lg    ffec^rofSfn^-^^T6' hiSh fiid' ~aiic] 

and some coupl^^ctors      VteLlt^^ dielect^ lo^es 
papers present^ by S^e^r [Si    f^rf^l6 K^H 

Were CiVen in three 
effects of mrpiiJ ~^ ger  LltJ'   L:L2J'   [13J ^hich summarized the 
+ ^r +       Parallel Pressure, lateral stress,  ac field    arinc ard 

P T ifh"^ '       g;   5'lk  ShoVS the P^allel stress effect on dt, and 

eonatent e^pUn. .acton ^den ^ZlV^L^Z,^1™ * 

.. 

oi 

:: 
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Fig, 5-15 The Youngs* modulus versus the parallel stress 
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Fig. 5-16 S3D3 and sJL versus prestress as calculated from Fig. 5-1I, 

. 1 

^33 = d33/(s3le3?)/' 

the elastic compliance 83! or the Young's modulus Y3
E = 1/33! can be 

deduced from Fig. 5.^. The result is shovm ^   *     ^Hlastic 
conplxance s3§ can be obtained by the relation   

B ^ ^ ine ^stic 

sal S33 (^33)7^33 (5-50) 

Sf^lJ"^    S 1
th!.comPliajlce s3i and s3i versus the parallel com- 

V^-l\        S.S  felations- L^r, data from these figures will be 
applied to calculate the effect of prestress on the resonant frequency. 

(B) Effects of Prestress, Temperature and 
Voltage on Resonant Frequency 

By applying the changes of material properties given in the 
Ji^+H '-^ summarized in Se^ion (A) , to the frequency equations 
for the various resonators and transducers, the new resonant frequencies 

t^e anfCU^ ^  V^ ^ the effectS of the P^stress, tempera- 
eSeet^flTt T T.^ evaluated- In the following, the prestress 
efTect will be treated and then the temperature and voltage effects 
will be discussed. 

c -.L 
The Prestress effect on resonant freouencv-ln Section (A), Figs. 

?-X4, >-i5, and 5-lb have shovm the material coefficient changes at 

: 

1^0 
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different prestress levels that are needed for calculating the resonant 
frequencies. For example, from Fig. 5-15 the Young's modulus, Ya", at 
a certain prestress level can be obtained. Substituting this value 
together with other data which are not changed by the prestress into 
the frequency equation (5-19), one can calculate the resonant frequency 
at this prestress level for the symmetric simple resonator. The results 
of this calculation are shown in Fig. 5-17. Similarly, for the P-7 
resonator and the P-7 transducer, one can obtain the necessary material 
coefficient variations from Figs. 5-1^, 5-15, and 5-l6 at various pre- 
stress levels and then substitute them into the frequency eq. (5-^3) 
for the P-7 transducer to get Figs. 5-l8 and 5-19- From the above three 
figures, one can see that the resonant frequencies increase with an 
increase in prestress level. 

The temperature effect on resonant frequency--Not enough data is 
available in the literature for a direct evaluation of this effect. 
The only material coefficient variation given [Ik],  [15] pertaining to 
cur problem is €3! which shows little increase from -60oF to 200oF. 
Thus, more experiments must be conducted on the variations of the material 
properties with temperature changes. However, it is possible to show by 
a fairly simple calculation that an increase in temperature will tend to 
release a portion of the prestress in the ceramics and to decrease the 
resonant frequency. 

The prestressed ceramic and center bolt of a simple resonator is 
shown in Fig. 20. Suppose at room temperature the ceramic has a total 
length Is.    The original prestress at room temperature was f0. Then, 
at temperature A9 above room temperature, the decrease in the prestress 

f can be shown to be 

f0 - f = (ofe^ - ac^3)A9/(l/Kc + 1/K2) (5-51) 

where Cfe and Qfe are the linear thermal expansion coefficient for steel 
and the PZT-U ceramic, respectively,  and the K's represent the static 
spring constants for the ceramic bar and the steel center bolt. 

For the simple resonator given in Section 5-1 (A), Kc = 2.5 x 10 
lb/in.  andKa - 1.12 x 107 lb/in.    For steel a2 = 6.5 x 10"s/oF, and 
for the ceramic c^ = 2.5 x 10-8/oC = l.U x 10"ö/oF.    Utilizing the 
values in eq.   (5-51), one obtains 

f = 20.3 £ß (5-52) 

This  relation is plotted as shown in Fig.  5-21.    Using eq.   (5-52) a 
theoretical-experimental approach will be introduced to evaluate the 
resonant frequency shift due to the prestress releasing effect.    For 
a P-7 transducer, the typical prestress on the ceramic is f0/ac = 5.^ 
ksi  (or,  125 ft-lb torque on the 3/U-in.  diameter stress bolt).    Thus, 
from eq.   (5-52), the prestress f/ac at any temperature can be calculated 
for the symmetric simple resonator.    After resonant frequency versus 
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prestress relations are determined experimentally, the resonant fre- 
quency versus temperature relations can be deduced. Particularly, for 
the symmetric simple resonator, the experimental resonant frequency 
versus prestress relation is given later in Fig. 5-34 (Section (D)); 
the result of this approach is shown in Fig. 5-22. 

For the asymmetric simple resonator, the P-7 resonator and the 
P-7 transducer, the prestressed portion is sliovn in Fig. 5-23. This 
time the same type of derivation leads to 

fo - f = Maate - Oete - CMsVO-Aa + 1/^3 + l/Kc)        (5-53) 

Substituting the data given in Table 5-2 and the material properties, 
one obtains K2 = I.587 x 10

7 lb/in., K3 = O.3826 x 107 lb/in., and 
«l« (5-53) becomes 

fo - f = 8.78 ^19 (5-54) 

Aßain, experimental resonant frequency versus prestress relations were 
obtained, as shown later in Figs. 5-35 and 5-36, for the P-7 resonator 
and the P-7 transducer, respectively. The stress release effects are 
obtained and shown in Figs. 5-24 and 5-25 for the P-7 resonator and 
the P-7 transducer, respectively, by employing eq. (5-54) and Figs. 5-35 
and 5-36. 
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U From the above results, one can see that the prestress release is 
a linear function of the temperature change.    As a result, the tempera- 
ture increase always reduces the resonant frequency of a resonator or 
a transducer.    In a later section one will see that this is in accord 
with the experimental observation. 

The electric field effect on resonant frequency--As mentioned in 
* ■ Section   (A),  there is not sufficient available literature to evaluate 

this effect.    The only plausible reasoning which can be put forth here 
is that a higher voltage tends to cause a higher amplitude of vibration 
in the transducer.    A bigger dynamic stress will be realized in the 
ceramics.    This according to the literature [15], tends to reduce the 
Young's modulus which in turn causes a resonant frequency drop. 
Berlincourt  [15] gave data which showed that a peak dynamic stress of 
k ksi corresponded to a % decrease in Young's modulus Y1

E.    However, 
data on the more useful Y3E is not available. 

(C)    Effect of Prestress on Resonart Frequency, 
Based on the Spring Model 

: 

I 

.   . 

The ceramic rings used in our resonators and transducers can 
be modeled strictly neither as a plate nor a rod.    It was suggested in 
Section 5-1 to model the ceramic rings as a linear spring leaving the 
spring constant K to be determined.    In so doing, it is envisioned that 
an experimentally determined K value for the symmetric simple resonator 
at a certain prestress level can also be applied to the other resonators 
and transducers.    It is envisioned that the spring models so applied 
will account for the resonant frequency shifts due to the prestress 
effect.    To find the spring constant, K,  at a given prestress level, 
the resonant frequency is obtained from the experimental resonant fre- 
quency versus prestress relation for a symmetric simple resonator given 
by the later Fig. 5-31+.    Then, the spring constant is determined from 

iFig.  5-6 at this frequency corresponding to this prestress level. 
1 Figure 5-26 gives the K versus the prestress relations so obtained. 

The data points can be approximated by a straight line which does not 
p pass through the coordinate origin. 

Having acquired the K values at different prestress levels, 
I    .. those values may be applied to calculate the resonant frequencies of a 

P-7 resonator and transducer at different prestress levels utilizing the 
spring model formulations presented in Section 5-1.    For convenience,   the 
numerically obtained resonant frequency of the P-7 resonator and the P-7 
transducer versus the spring constant K is plotted in Figs.   5-27,  5-28 

i and 5-29,  respectively.    Now at any prestress level,  the spring constant 
K can be obtained from Fig.   5-26.    The resonant frequencies can then be 

I obtained from Figs.  5-27,  5-28 and 5-29 for the P-7 resonator and the 
P-7 transducer, respectively.     The resulting resonant frequency versus 
prestress  relations are given in Figs.   5-30 and 5-31.     It is seen that 

I the resonant frequency increases with an increase in prestress,  also 
that the  rate of increase of the resonant frequency with the prestress 
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:i 
is quite large at the beginning of the prestress and then appears to 
level off asymptotically at higher prestress to a certain value for 
each resonator or transducer. 

(D) Resonant Frequency Experiments 

Some simple experiments have been conducted in the OSU Sonic 
Power Laboratory to measure the resonant frequencies of various resona- 
tors and transducers for different enviimments. The experimental set- 
up is shown schematically in Fig. 5-32. 

The prestress effect on resonant frequency—This experiment has 
been conducted on the symmetric simple resonator, the P-7 resonator and 
the P-7 transducer. The prestress was applied by a torque machine on 
which accurate torques on the end nut were measured. The frequency at 
every torque reading was then measured on a frequency counter. Although 
an empirical torque - prestress relation is available, which reads as [16] 

Torque = 0.2 x (Prestress on ceramics) x (Ar-\ of 
ceramics) x (Outer diameter of threaded 
rod) 

an actual calibration curve was obtained by placing a strain gage on 
the steel sleeve of the P-7 transducer. This curve is shown in Fig. 
5-33• It is seen that the empirical relationship, which is a straight 
line, gives a prestress which is slightly too high at large torque 
values. With a torque at 125 ft-lb (typical for a P-7 transducer), the 
experimental prestress given by Fig. 5-33 is 5.^ ksi, while the empirical 
one predicts 7-5 ksi. 

The experimental results are shown in Figs. 5-3^3 5-35 and 5-36. 
For comparison, the theoretical results are also included in the above 
figures, being given as the dashed lines. In the following figures, 
"theory //l" refers to one-dimensional rod theory; while "theory #2" 
refers to the spring model. It is seen that the one-dimensional rod 
theory generally gives a resonant frequency which is too high compared 
to that given by the experiment. Furthermore, the variation of the 
resonant frequency with the prestress is much less than the experimental 
results. On the other hand, the spring model gives very good results 
for the P-7 transducer, which can be seen from Fig. 5-36. Further, at 
high prestress in the vicinity of the operation point (5.^ ksi for P-7), 
the theoretical results and the expsrimeutal results are quite close. 

From these results, one may conclude that the change of the material 
properties due to prestress effects could not account for all the fre- 
quency shift observed experimentally. However, at high prestress level, 
material properties appear to account for most of the change. Since a 
high prestress level tends to increase the interface friction which 
may, in turn, suppress the vibrational modes other than the longitudinal 
ones of the ceramic rings, the ceramic may behave more like a longitudinal 
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Fig.  5-35    The resonant frequency versus the prestress relations 
for a P-7 resonator 
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rod. At low prestress level, there must be other effects. It could be 
the friction effect at the interfaces or the two-dimensional effect of 
the ceramics. 

of course, both the theoretical approaches are far from perfect. 
This is evident from Figs. 5-31+, 5-35 and 5-36. In Fig. 5-31+, theory 
#1 is off in both magnitude and shape, though the v^^iation of the 
resonant frequency with the prestress at high prestresd level is com- 
parable to that of the experimental ones. In Fig. 5-35} it is seen 
that above moderate prestress level theory #1 agrees, better than 
theory $2, with the experimental values. In Fig. 5-3<-.' theory #2 is 
in accord with the experimental results, while theory #1 is again off 
in both magnitude and shape. Unfortunately, there seems to be no con- 
sistency in both approaches. However, at ceramic prestress levels of 
approximately 5 ksi or greater, the discrepancies seem to be less 
severe for both the theories. 

The temperature effect on resonant frequency—Some data were 
obtained previously in the OSU Sonic Power Laboratory on this effect 
[17]. Unfortunately, the data are somewhat rough since th'i  temperature 
was not even along the transducer. Tuerefore it is difficult to make 
any meaningful analysis on these data. To overcome this difficulty, 
the transducer (or resonator) was placed in an oven and slowly hented 
to a given temperature (130oF), at which time the oven was turned off. 
While the transducer (or resonator) was gradually cooling down, resonant 
frequencies were measured at various temperature readings. The results 
are given in Figs. 5-37j 5-38 and 5-39 as solid lines. On these 
figures, the theoretical results, as given previously in Figs. 5-22, 
5-2'+ and 5-25» are also plotted as dashed lines for more direct compar- 
isons. Note that the slopes of the theoretical curves are similar to 
those of the experimental ones which would imply that the decrease in 
the theoretical resonant frequency due to th thermal prestress release 
effect is comparable to that of the experimental observation. This 
may, in turn, imply that the main cause of the decrease in resonant 
frequency due to temperature increase is the thermal prestress release 
in the ceramics. However, it was observed that when the temperature 
of the transducer returned to room temperature after the test, the 
resonant frequency was higher than the original one (before the test) 
by a finite amount. Evidently the heat treatment causes some permanent 
changes in the PZT-U properties. Krueger [12] noted that this effect 
can be used to stabilize the ceramic properties. The heat-stabilizing 
treatment consists simply of immersing the specimens in 200°C oil for 
one hour according to Krueger. 

The voltage effect on the resonant frequency—It has been observed 
in the OSU Sonic Power Laboratory that a voltage increase will cause a 
resonant frequency drop for a transducer [18]. The experimental results 
in this investigation reaffirm the above observation. Figures 5-^-0, 
3-hl  and 5-^2 give data for the symmetric simple resonator, the P-7 
resonator, and the P-7 transducer. They also reveal that the paths of 
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increasing and decreasing voltages do not coincide.    In general, the 
path for a decreasing voltage is lower than that for an increasing 
voltage.    This is evidence that a high voltage on the ceramic causes 
some irreversible changes of the ceramic properties as well as certain 
reversible effects. 

3 

5 

: IJ 

'A 

1 

5-1+    SUMMARY 

The ultimate objective of this work has been to model the transducer, 
predict resonant frequency and to account for frequency shifts due to 
prestress, temperature and voltage.    To accomplish the goal, the 
symmetric simple resonator,  the P-7 resonator and the P-7 transducer 
have been formulated by one-dimensional wave theory, and the resulting 
frequency equations were solved numerically on a computer.    Prediction 
of the resonant frequency shifts has been attempted from two stand- 
points :    l) by utilizing the one-dimensional rod model to consider the 
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effects of piezoelectric material property changes due to environmental 
changes and 2) by modeling the ceramic as a massless spring and leaving 
the spring constant to be determined by resonance experiments on the 
symmetric simple resonator to account for the prestress effects quasi- 
theoretically. Finally, resonance experiments which included the 
prestress, the temperature and the voltage effects were conducted. The 
experimental results were compared to the theoretical ones where thev 
were available. 

Comparison between the experimental and the theoretical results 
shows that at low prestress level on the ceramics, the one-dimensional 
longitudinal rod model gives resonant frequencies much too high; while 
the spring model has a better agreement. At high prestress level near 
the operation point (5.I1 ksi on ceramics), both the one-dimensional rod 
and the spring model give results close to the experimental ones. 
Although both theoretical models predict an increase of resonant fre- 
quency for an increase in prestress level in accord with the experimental 
observations, neither of the theoretical models accurately predict the 
rate of increase in resonant frequencies. The temperature and voltage 
effects on the transducer (resonator) are not thoroughly treated because 
of the lack of material property change data in the literature. For a 
more complete assessment of those effects, more experiments must be 
performed. Nevertheless, the prestress release effect due to the 
thermal expansion of the transducer elements was found to be in accord 
with the experimental observations. However, the finite jump of the 
resonant frequency after heat treatment can only be accounted for after 
data of the experimental material property changes are available. 
Recycling information on heat treatment and voltage exposure also needs 
to be investigated in the future. 

Discrepancies between the rates of increase of the resonant 
frequencies as a result of the prestress may suggest that the one- 
dimensional rod modjl is not adequate. A more exact mathematical model 
may be needed. The numerical result of the one-dimensional rod model 
reveals that a 30^ change of the Young's modulus can only shift the 
resonant frequency of a simple resonator by about 200-300 Hz (comparing 
to about 1400 Hz obtained experimentally). Possibly, modeling two- 
dimensional effects and including the interface friction in the fonnu- 
lation will improve the theoretical results. 

Nevertheless, in conclusion, some interesting results should be 
mentioned. First, it was noted from the symmetric simple resonator 
analysis that the elastic constants of a piezoelectric material are the 
dominating factors in resonant frequency calculation. Secondly, the 
stress release due to thermal expansions does contribute to frequency 
shift for a temperature rise. This effect can be reduced by using a 
longer center bolt or soft (with smaller Young's modulus) metals to 
prestress the ceramics and thus to reduce the spring constant or, this 
can also be achieved by employing metals with thermal expansion coeffi- 
cients near that of the ceramic. 
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6. DEVELOPMENT OF A KJLSE REFLECTOR FOR 
SONIC TRA?:SDUCERS 

The ultrasonic transducer is a device vhich converts electric input 
energy into vibratory mechanical energy. It consists of piezoelectric 
ceramic rings sandwiched in a resonant horn assembly. The horn, which 
is an energy concentrator, is in turn connected to a transmission line 
that transmits mechanical energy to the working surface. The piezo- 
electric ceramic rings, which are the most important elements in the 
transducer, have two interesting properties: (i) For a given elec- 
trical disturbance to the piezoelectric ceramic, mechanical pulses are 
produced, and (ii) given a mechanical disturbance to the ceramics, 
an electrical pulse is produced. Due to the first property of the 
piezoelectric ceramic, the sonic transducer has been widely used for 
converting electric energy into mechanical energy and thus has found 
application as a mechanical tool for drilling, cutting, and welding. A 
technique used for the transmission of energy from the sonic transmission 
line to the work surface is impact coupling, where a small, bouncing 
slug of metal is placed between the end of the vibrating sonic trans- 
mission line and the work surface. This slug of metal, usually called 
the "tool" and typically a cylinder one inch in diameter and about an 
inch long, bounces back and forth between line tip and work piece 
through repeated impacts w?th and rebounds from the respective surfaces. 

As the tool rebounds from the working surface and consequently 
impacts on the tip of the transmission line, a stress pulse is generated 
and propagated along the transmission line into the transducer. As a 
result of the second property of the piezoelectric ceramic, a high 
voltage electric pulse is then produced across the face of the ceramic 
ring. The high voltage electric pulses, especially whenever coupled 
with the input electric voltage from the electric power supply, may 
cause an arc-over phenomena across the face of the ceramic. This elec- 
tric arc may crack the piezoelectric ceramic or eventually cause 
dielectric breakdown. Therefore, the developnent of a reflector device 
to prevent stress pulses frcm entering the transducer beccmes desirable. 

The basic concept of designing a pulse reflector originates from 
understanding that a stress pulse propagating along a transmission line 
will be completely reflected from a fixed boundary condition and will be 
largely reflected by a sudden, large increase in cross-section. There- 
fore, a desirable configuration for a pulse reflector would be a stepped 
cylinder which closely simulates the fixed edge boundary condition. 
Early studies in the P-7 transducer by Feng [1]* and Libby [2] observed 
that P-7 transducers did not fail during the impact-coupling applica- 
tion, but it was noted that this was not the case for the P-ll trans- 
ducer.  This observation suggested that the step at the P-7 transducer 
may reflect a large amount of the stress pulse and thus prevent the 

„ failure of the piezoelectric ceramic. 

^Numbers in brackets refer to references at the end of this chapter. 
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fonct.on n? th^ +   f 
a S.treSS pUlSt reflector ^thooat affecting the 

«h^l* wf lu    transducer-transmission line system, the pulse reflector 
should have the same resonant frequency as the transducer so that after 
the reflector xs connected to the transducer, the whole system will 
vibrate at the same resonant frequency. 

Based on previous preliminary studies, two basic types of pulse 
reflectors were developed. Theoretical analyses to investigate the 
resonance and reflection characteristics of the pulse reflectors were 
conducted  The theoretical results were later verified by experimental 
tests  It was found that with the pulse reflector connected to the 
P-ll transducer, 80% of the incident pulse was reflected. The voltage 
generated across the face of the piezoelectric ceramic rings bv the 
pulse was also reduced 80^, =>  ^ 

6-1 REFLECTOR DESIGN 

(A) Theoretical Analysis of Reflection 
Characteristics 

As the first step in the design of a stress pulse reflector, 
it is necessary to understand the reflection-transmission characteristic 
of a stress pulse at a discontinuity. A one-dimensional wave theory is 
used for this purpose. The configuration of the discontinuity is shown 
in Fig. 6-1. 

.Transmitted wove 

Reflected wove 

~) 

EMZJ 
Incident wove 

Fig. 6-1   Waves across a discontinuity 
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Cross-sections and material densities for section I and II 
are Ai, A2, and pj., Q2,  respectively. An arbitrary incident pulse 
fi(x - Cxt), may be considered to be made of many frequency components 
in a Fourier sense. Thus, a superposition of many waves of the type 
Uj = A exp[i71(x - Cit)] may be used to obtain a pulse shape f(x - cit), 
where UT and Cj. are the displacement and wave velocity of the incident 
wave. Similarly, the reflected wave in section I and the transmitted 
wave in section II can be expressed as UR = g2(x + Cxt), and 
v»r = f2(x - C2t), respectively. 

Boundary conditions at the discontinuity are based on conti- 
nuity of force and of particle velocity and are 

Aj. (Tj + (TR) = AsOj 

VI + VR = VI 

x = 0 

x = 0 (6-1) 

where 

VI = vR = cxga , /fp = - C2f2 

ÖUr 
ri= ^ "sr= EifL'»   ^ = Ei "sr= Elg^,»   ai 

dup 
CT = E2 -sr- = E2f2, 

(6-2) 

and where Ej. and E2 are the Young's modulus of section I and section II, 
respectively. The prime indicates differentiation with respect to the 
argument. 

Substituting eq. (6-2) into eq. (6-1) and solving for f2, and 
ga', yields 

12  = 
_2c1A1E1. 

f • g . _ E^aifil^ , f, ' 

fe' 

AiE1C2 + A2E2C! 

lApE? - CgAtE! f , 
A1EXC2 + A2E2C!  1 (6-3) 

Since crT = E2f2', CTR = Eiga' and Ei = cf^, E2 = cf^, the results in 
eq.   (6-3) may be put in the form 

„   _ 2A1C5c2 

^   ' Ai^Cx   + A2C2C2  aI 

= A2t;2c2 - A^^c^ 
K     AiCxCi + A2C2C2    I (6-10 

Equation  (6-U) represents the relationships between transmitted stress 
Om, reflected stress CTR and incident stress oj. 
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If the materials for both sections are the same, i.e., 

Ei = E2 = E, U = ^2 = ^ ^ ci = C2 = c' e(l- (6-U) can be exPressed as 

2Ai 
^i.' = Ai + A£ 

CTT   = 

1 + 

A2  - AT. An 
Aa. 1 

1+r (6-5) 

Plots of the relations between 2/(1 + AO/AJ,   (A2/AX - 1V(l + A2A1) ^ 
L/Ax  axe presented in Fig.  6-2.    For As/A, = 9 it is+f ^^.^f 
the incident stress should be reflected at the discontinuity and onl^r 
2036 of the incident stress should be transmitted to section I. 

(B)    Analysis of Resonance Characteristics 
of Reflectors 

Two types of pulse reflectors axe considered in the present 
investigation.    The "Type A" reflector is shown in Fig. 6-3-    W^g 
one-cLünensional analysis for the stepped cylinder,  sample strength of 
materials theory and Hooke's law axe assumed to apply.    The governxng 
differential equations of motion are 

agu,    1 cfui 
^? = ^"5t^ ' 

^UP    1 agug 
^ = C2 "^T 

(6-6) 

where % and u2 axe displacements in section I and II, respecti'ely and 
c2 = E/^. Solutions for eq. (6-6) axe: 

ux = (BL sin kxx + B2 cos kxj.) cos wt 

U2 = (B3 sin kxa + B4 cos kXx) cos ut (6-7) 

vhere k2 = u)2/c2 and u is the radial frequency. 

Boundary conditions for the stepped cylinder axe: 

Uj. = -us , at xx = 0, X2 = 0 

^-^ ä3C2   ' 
at xx = 0, x2 = 0 

at r.x = Li = 5 in- 

st    x2 = L2 = 5 in. (6-8) 
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Fig. 6-3 Dimensions and coordinates of Type A 
pulse reflector 

.; 

u 

Substituting solutions of eq. (6-7) into the boundary conditions of 
eq. (b-öj, the following set of equations is obtained; 

B2 + B4 = 0, AiBi - A2B3 = 0 

Bxk cos kLx - B2k sin kLj. = 0 

Bak cos kL2 - B4k sin kLa = 0              (6-9) 

These can be further reduced to 

j2 B3 cos kLi - B4 sin kLx = 0 

Ba cos kLi - B4 sin kl! = 0 (6-10) 

u- u .,. The 0nly nontrivia:L solutions to eq. (6-10) are those for 
which the determinant of coefficients is equal to zero. This deter- 
minant is given by 

Ao 

Ai 

cos kL2 

j^ cos kLi   sin kLx 

-sin kLs 

17h 

= 0 (6-11) 
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which expands to the frequency equation 

& jf-  cos kLj, sin kLo + sin kLx cos kLo = 0 (6-12) 

For the present case k3/kx  = 9, and Lj. = Ls = 5 in., the 
frequency equation becomes 

10 cos kLi sin kl^ = 0 

The solutions for eq. (6-13) are 

kLi = n(n/2),   (n = 1,2,3,...) 

Let n = 1 for the first mode of vibration, to give 

K " 2 'Li " 10 

so that the first mode resonance is 

(6-13) 

- _ kc   icr_ 
2n   2« ~ = 9989-»+ Hz 

A "Type B" reflector configuration, shown in Fig. 6-U, was 
also considered. The basic idea was to have a half-wavelength device, 
with the discontinuity in the center. The method of analysis closely 
followed that used for the Type A reflector. Thus, the governing 
equations of motion are 

yut    1 agu, 

öxa''  c7 "St- 

afu 1 yuo 

(6-1U) 

where Uj., u^, and U3 are displacements in sections I, II, and III, 
respectively and c2 =  E/t;. 

Solutions for eq. (6-lU) are 

ux = (A sin kXi ■*■ B cos kxx) cos tot 

u2 - (C sin kxg + D cos kx2) cos ut 

U3 = (F sin kxa + G cos kxa) cos ut (6-15) 

where k2 = UJ
2
/C

2
, and OJ is the radial frequency. The boundary conditions 

are 
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Fig. 6-U Dimensions and coordirates of the Type B 
pulse reflector 

k-°' 
Ux = -U2 , 

Ai ^= A2 "s:' 
U2 = U3 , 

at Xi = Lx 

at Xi ■ 0, x2  = 0 

at X]. = 0, Xp = 0 

at X2 = L2, X3 = 0 

at X2 = L2, X3 = 0 

at X3 = L3 (6-16) 

Substituting the solutions of eq. (6-15) into the boundary 
conditions of eq. (6-16), yields the foUowing set of equations; 

A cos kLi - B sin kLi = 0 

B + Ü = 0 

AjA + AoC = 0 (6-17) 

. . 

Ü 
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This reduces to 

C sin kL- + D cos kL2 - G = 0 

k2{C  cos kLa - D sin kLa) - A3F = 0 

F cos kLa - G sin kLa = 0 

^2. C cos kLi + D sin kLj. = 0 
Ai 

C sin kL2 + D cos kL2 - G = 0 

C co 

(6-17) 

• kL2 - D sin kL2 - |j F = 0 

(6-18 

-1 

0 

-sin kLa 

= 0  (6-19) 

F cos kLa - G sin kLa ■ 0 

This determinant of coefficients is given by 

T
6
 cos kLi    sin kLj.    0        I 

Ai 

sin kLs      cos ^2 0 

cos kL2     -sin kL2 - Aa/A2 

0 0 cos kLa 

which gives the frequency equation 

&S cos MafJa cos kL2 sin kLa + sin kLi cos kLa) 
Aj.      VAg 

. sin ^/Aa sin kL2 sin ^3 . cos kL2 cos kLa) - 0  (6-20) 

For the present case A^ - 9, Aa/Aa = l/9, Li = La = 3-5 in., 
and L2 = 3 in., so that eq. (6-20) becomes 

cos 3k cos 3.5k cos 3.5k + 9 cos 3.5k sin 3k cos 3.5k 

- I sin 3.5k sin 3k sin 3.5k + sin 3.5k cos 3k cos 3.5k = 0 

The solution for the first mode is k = O.U8U33, giving a 

resonance frequency of 

f ^ kc  O.U8U33c . 15)323 Hz 
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6-2    MEAS'JRENEriT OF RESONANCE AND REFLECTION 
CHARACTERISTICS 

Kxperiment-jl measxirements of the resonance and reflection charac- 
teristics is desirable,  to verify some of the analysis, particularly 
since there  are saae deviations of the configuration used in analysis 
from the actual pulse reflector.    Three types of tests were conducted. 
The first test was the measurement of the resonance characteristics of 
the Type A and B pulse reflectors.    Also,  resonance tests were made on 
a P-ll as a check of that design.    The second test was measurement of 
the stress reflection from the Type A and B reflectors.    Additionally, 
pulse reflection tests were also done on the P-ll horn.    The third 
test was a cemparison of the reflection characteristics of a P-ll 
transducer with and without the Type A pulse reflector. 

(A)    Measurement of Resonance Characteristics 

The basic  set-up for this test consisted of two small magnetic 
transducers,  a Brüel and Kjear 1013 oscillator, an electronic counter 
and an oscilloscope as shown schematically in Fig.  6-5. 

Oscillator 
(Brüel and 

Kjear 1013) 

Electronic 
counter 

(5233L) 

■a 
i 

Pulse   reflector 

Magnetic transducer 
A (Brüel and Kjear 
MM-0002) 

ma 
irfhm L 

Magnetic transducer 
B(BrUel and Kjear 
MM-0002) 

Tektronix 
549 

Oscilloscope 

Fig. 6-5    Schematic diagram of apparatus 
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I The B and K oscillator generated a harmonic signal to the mag- 

netic transducer A and it, in turn, vibrated the pulse reflector throußh 
magnetic coupling. The magnetic transducer A was placed approximately 
one-sixteenth of an inch from the end face of the pulse reflector. An 
identical magnetic transducer was us?d as a pickup at B, with its output 
signal displayed on the oscilloscope. By varying the driver frequency 
from the oscillator, the resonance frequency of the pulse reflector was 
easily determined from the maximum amplitude of the vibration shown on 
the oscilloscope. The results of the tests are shown in Table 6-1. 

Table 6-1 - Resonance Frequencies of Reflectors and P-ll Horn 

I" 

s 

Specimen Resonance Frequency Observed 

Type A reflector 

Type B reflector 

P-ll horn 

fn = 10,779 kH« 

fn = 1U,309 kHz 

fn = 10,308 kHz 

(B)    Measurement of Reflection Characteristics 

Incident and reflected stress pulses along a transmission line 
can be .Tionitored by means of strain gages attached on the transmission 
line.     Jhe incident stress wave is produced by firing a one inch in 
diameter, one-inch-long steel tool from a spring gun as shown in Fig. 
6-6.    By canparing the amplitude of the incident stress pulse and the 
reflected stress pulse,  one can determine the percentage of the incident 
wave being reflected from the pulse reflector.    The results can be used 
directly for comparison with the previous theoretical results. 

Oscilloscope Signal 
processor 

Ji 
fL j ^r^w^wö.l-lllll 

Strain gages 

l Spring gun ^^  / uam Pulse tetiectui 

''Transmission line 

Fig, 6-0    Schematic diagram of experimental set-up 
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Test of Type A pulse reflector--The results of the Type A pulse 
reflection are shown in Fig.  6-7•    It is seen that the joint at section 
bx where the reflector attaches to the transmissi :n line, and Cj., 
causes  some slight decree of influence in reflec1 ion of the streps 
pulse.    It is also observed that the amplitude of the reflected wave 
is approxlaately 80^ of the incident wave; these results are quite 
close to theoretical prediction. 

Test of Type B pulse reflector--The results for the Type B reflec- 
tor, shown in Fig, b-o, are similar to the case of the Type A reflector; 
an effect due to the connecticr between the transmission line and pulse 
reflector is noted.    Again,  the amplitude of the reflected wave equals 
to 80^ of incident wave,  and is in good agreement with the theoretical 
calculations. 

Test of P-ll hom--It is interesting to observe the reflection 
characteristics  of a P-ll horn.    As shown in Fig. 6-9, the amplitude 
of the reflected wave equals epproximately 50/0 of the incident wave 
amplitude.    This means approximately 50^0 of the energy from the incident 
pulse will transmit into the transducer. 

(C)    Measurement of Pulse Reflector Efficiency 

Tests were made to determine the difference in electrical 
pulse amplitude  from the ceramic rings of a P-ll transducer with and 
without the Type A reflectors in place.    Figure 6-10 shows the setup 
and results fcr the P-ll transducer without the reflector.    The top 
trace of the photograph is the familiar stress wave, while the lower 
trace is the voltage generated by the stress wave transmitted into the 
transducer. 

Figure 6-11 shows the results with the Type A reflector in 
place.     It is seen that the induced voltage pulse is reduced from 5«^ 
kV without the reflector to a level of 1.0 kV with the reflector. 

6-3    SUMMARY 

The theoretical analysis of the rellection characteristics indicated 
that a pulse reflector design with a stepped cylinder configuration and 
an kp/kx  ratio equal to 9 would provide 80^0 reflection. Both theoretical 
calculations and experimental tests verified these findings. 

Of the two types of pulse reflectors considered, it was found that 
the reconance frequency for the Type A poise reflector was much closer 
to the natural frequency of the P-ll transducer than the Type B reflec- 
tor, so that only the Type A reflector was considered in final tests 
with the P-ll.  Final comparison tests indicated that the voltage 
generated at the ceiamic rings by the tool impact was reduced more 
than 80% compared with the results without the pulse reflector. 
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Vert div. = 0.5 V 

Horiz. div. = ^0 [isec 

1—»- Reflected wave from section e^. 

♦-Reflected wave from section di 
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Fig. 6-7 Typical stress pulse output observed for Type A 
reflector with interpretation of the wave form 
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Vert.  Div.  =  0.5 V 

HLriz.  Div.  =  50 ^sec 

*- Reflected from section f2 
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Fig. 6-8 Typical stress pulse output for Type B reflector 
with interpretation of the waveform 
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Vert div. - 0.5 V 

Horiz. div. -  50 iisec 

»►Reflected wave from f3 

Reflected wave from e3 

-Reflected wave frcm ^ 

■Reflected wave from C3 

Reflected wave from b3 

i-* Second impact wave due to misalignment between tool & transmission 1 

-Incident pulse at section a.3 

me 

Fig. 6-9 Stress pulse output for P-ll horn with interpre- 
tation of the waveform 
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Ceramic   rings 

Incident pulse -it section -i., 

Reflected wave from section b.j 

-Reflected wave from section c.j 

♦"Reflected wave from section d.j 

^•Reflected wave from e.; 

Reflected wave from f4   (ceramic 
rings) 

Vert. div.  0.5 V 

Itoriz. div.  50 ^isec 

Vert. div. - 5 kV 

Horiz. div.  50 asec 

Voltage pulse due to transmitted wave 

Fig. 6-10 Typical stress pulse and voltage output for 
transducer, without •) pulse reflector 
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Vert. div. = 0.5 V 

Horiz. div, = 50 usec 

Vert. div. = 5 kV 

Horiz. div. = 50 usec 

Voltage pulse  due to transmitted wave 

I Fig. 6-11 Typical stress pulse and voltage output for !'-ll trans- 
ducer with the Type A p- ..je reflector in pl^ .e 

li 5 



6-k    REFERENCES 

1, Feng,  C.  C, and Graff,  K. F., "Impact on a sonic transmission line," 
Engineering Experiment Stition Report 220-q3-68, The Ohio State 
University. 

2. Libby,  C,  C., "Impact Coupled Motor Generator Set," Engineering Experi- 
ment Station Report 220-Q3-63, The Ohio State University. 

;. 

] 

] 

■| 

] 

166 

: 

L- 


